ATLAS TRIGGER AND DAQ CURRENT AND FUTURE

Streaming Readout Workshop (SRO XII) 3 December 2024, at Tokyo University

Kunihiro Nagano (KEK/IPNS, Japan)

- LHC starts from 2010
- 4 experiments(ATLAS, CMS, LHCb, ALICE)
- 2010 \sim 2012 : 【Run1】 E=7, 8 TeV
- 2015 ~ 2018 : [Run2] E=13 TeV
- 2022 ~ 2025 : [Run3] E=13.6 TeV
- 2029 ~ : 【HL-LHC】

ATLAS Experiment @ATLASexperiment

On 30 March 2010 - 10 years ago **#OnThisDay** - the ATLAS Experiment at **@CERN** recorded its first-ever high-energy collisions!

2

This major milestone came after years of preparation and hard work - with celebrations in the Control Room reflecting the excitement <u>m#10yearsofLHCphysics</u>

9:14 PM · Mar 30, 2020 · Twitter Web App

LHC / HL-LHC Plan

LHC design : E=14 TeV, Lmax=1 x 10^{34} cm²/s

LHC / HL-LHC Plan

4

Physics at LHC

First time exploiting physics at TeV energy scale

- The origin of EW symmetry breaking: Higgs mechanism
- Direct searches for Physics beyond SM (BSM)

Only possible with advanced technologies not only for experiments/detectors but also physics

- Experimental
 - Radiation tolerance
 - Pileup, high luminosity (vs. trigger, r/o)
- Physics analysis
 - Data driven technique, ML, statistics ...
- Physics/theory
 - QCD (higher order, jet algo, PDF etc.) ,,,

Remarkable advances particularly in hadronic objects reconstruction e.g. with ML/AI

- -- b-jet tagging
- -- Constituent (in large R jet) based W, top taggers
- -- Jet calibrations

Extensively used as well in the trigger

Pileup

- Multiple pp interactions per 1 bunch crossing = called "pileup"
 - pp total cross section x 10³⁴ cm²/s
 >> nr. of bunch crossings / s
 - Run3 average nr. of pileups $(<\mu>)$ 47, up to 70-80

6

LHC design ~25

HL-LHC: ~200

- A big challenge for experiments
 - Deterioration of detection/identification of "objects" (e.g. electron/photon, τ , b-jets, E_T miss)
 - Increase of hit rates
 - \rightarrow Heavy load for readout system
 - Increase of computing time, particularly for tracking
 - → Challenge for Trigger/Computing

- 40 MHz bunch crossing (25ns time spacing) with ~2 MB event size
 - Large event rate reduction : 40 MHz \rightarrow 100KHz for readout, further down to O(1 kHz) for recording
 - Deadtime free \rightarrow pipelined online processing (at L1 before readout)
- ATLAS Trigger: 2-level trigger system, L1 and HLT (High Level Trigger)
 - L1: fully time synchronous, with a fixed latency ($2.5\mu s$). Custom hardware.
 - HLT: processing at computing farm

ATLAS Trigger DAQ [Run3]

- Already at L1, there is L1Topo that calculates correlation between objects (e.g. mass between 2-muons)
- Inner tracker information is available only from HLT
- HLT: "Region of Interest (RoI)" concept →bandwidth saving
 - e/mu/ τ /b-jet/jet : HLT readouts only the areas identified by L1

ATLAS Trigger DAQ [HL-LHC]

- Latency gets 4 times longer → all FEs will be replaced
- A major upgrade for Trigger and DAQ
 - L0: 100 kHz → 1 MHz
 - Latency : $2.5 \rightarrow 10 \ \mu s$
 - EF: \sim 3 kHz \rightarrow 10 kHz

ATLAS Trigger DAQ [HL-LHC]

Tracking – a key to control pileup

HL-LHC trigger menu (TDR)

Single lepton, di-lepton

• Threshold lower than Run3: $28 \rightarrow 22$ GeV

Hadronic (E_Tmiss, multi-jets)

• Threshold similar to Run3

	Run 1	Run 2 (2017)	Planned		After	Event
	Offline p_T	Offline p_T	HL-LHC	LO	regional	Filter
	Threshold	Threshold	Offline p_T	Rate	tracking	Rate
Trigger Selection	[GeV]	[GeV]	Threshold [GeV]	[kHz]	cuts [kHz]	[kHz]
isolated single e	25	27	22	200	40	1.5
isolated single μ	25	27	20	45	45	1.5
single γ	120	145	120	5	5	0.3
forward e			35	40	8	0.2
di-γ	25	25	25,25		20	0.2
di-e	15	18	10,10	60	10	0.2
di-µ	15	15	10,10	10	2	0.2
e – µ	17,6	8,25 / 18,15	10,10	45	10	0.2
single τ	100	170	150	3	3	0.35
di-T	40,30	40,30	40,30	200	40	0.5 ⁺⁺⁺
single <i>b</i> -jet	200	235	180	25	25	0.35
single jet	370	460	400	25	25	0.25
large-Ŕ jet	470	500	300	40	40	0.5
four-jet (w/ b-tags)		45 [†] (1-tag)	65(2-tags)	100	20	0.1
four-jet	85	125	100	100	20	0.2
H _T	700	700	375	50	10	0.2***
$E_{\rm T}^{\rm miss}$	150	200	210	60	5	0.4
VBF inclusive			$2x75 \text{ w} / (\Delta \eta > 2.5)$	33	5	0.5
			& $\Delta \phi < 2.5$)			
B-physics ^{††}			, ,	50	10	0.5
Supporting Trigs				100	40	2
Total				1066	338	10.4

ATLAS Trigger DAQ [HL-LHC]

Toward HL-LHC

Trigger – tracking (commodity acceleration, ML tracking)

DAQ – readout (FELIX)

	<i>b</i> -physics		50	10	0.5
	Supporting Trigs		100	40	2
Tracking – a key to control pileup	Total		1066	338	10.4

Readout

- FELIX to harmonize detector readout system
 - To reduce the number of custom electronics components and design effort by leveraging commercial products (network i/f cards, servers, and network switches), resulting in granting greater flexibility in maintenance, upgrades, and customization
 - Commodity servers equipped with PCIe FELIX cards
 - Data received over point-to-point optical links and routed to peers via ethernet
 - The primary peer on this network is SWROD
 - FELIX card (FLX-712)
 - 16-lane PCIe Gen3
 - Xilinx Ultrascale FPGA (XCKU115-FLV-1924)
 - 8 Avago Minipod transceivers (TX and RX)
 - Optical links protocols: GBT (rad-hard standard developed at CERN) 4.8 Gb/s, and FULL mode (9.6 Gb/s)
 - Being used a since Run3 for certain subsystems

Readout

LAr digital processing blade (FULL mode)

(c) Max. Message size 22 kB

Figure 4: Examples of FELIX readout of LDPB: Throughput, Rate and Message Size.

NSW readout efficiency (GBT)

Figure 6: NSW readout efficiency before and after CPU optimizations to correct for late packet arrival.

→ Significant improvement during commissioning and early data-taking to allow 100 kHz readout with data losses due to FELIX negligible

Readout

- FELIX for HL-LHC
 - Maximum link speed : up to 25 Gł
 - Supports: GBT, lpGBT, 64b/67b-e
 - Two prototypes FLX-181 and FLX
 - AMD Versal Prime FPGA
 - 24 FireFly optical links
 - 16-lane PCIe Gen4
- All ATLAS readout will use FEI
 - ${\sim}14000$ optical links with 25 Gb/s
 - Data Handler evolve from SWR(

(a) FELIX card prototype: FLX-181

⁽b) FELIX card prototype: FLX-182

FELIX in the wild

More information in backup slides

- 2 MHz readout via FELIX
- 15360 channels, 55 GB/s throughput
- Data taking started in 2018

NA62

- Kaon physics experiment
 At CERN SPS
 - Readout with

- sPHENIX
- Located at RHIC, BNL
- 3 subdetectors readout with FELIX
- Streaming and triggered readout

SPIDR4

- Readout of Timepix4 pixel sensor
- Modified version of FELIX firmware and software

Online processing

• Reconstruction of physics objects : e/γ , τ , b-jet, jet (large-R), μ , E_{Tmiss}

Chain

- Trigger logics and prescales ("Menu")
 - A "Chain" one logic (e.g. electron $E_T > 28 \text{ GeV}$)
 - Menu collection of O(1000) chains with prescales
- Trigger-specific functionalities (different to offline)
 - HLT rejects events ("early rejection")
 - HLT does regional reconstruction ("RoI")
 - Need to record execution history ("navigation")
- Events are recorded in streams
 - Physics: Prompt, Delayed
 - Calibration, Express (DQ), Debug
 - Trigger Level Analysis (TLA)

- Calibration (alignment, noise etc.) data are recorded with dedicated triggers (zerobias, random, noise-burst triggers etc.) into dedicated streams
- First-pass calibrations ready within 48 hours \rightarrow bulk reconstruction of physics data
- Online (trigger) uses the best-known (usually, latest) calibration constants, some exceptions are online-measured luminosity, beamspot (average x,y position of beam), dynamic pedestal subtraction of L1 calorimeter, etc.
- The data quality (DQ) is monitored at data-taking (online) and with express stream (before 1st pass reco)

c.f. for perfect alignment of trackers

• Not only run-by-run, time-depending (during run) alignment is corrected at offline (for physics analysis) which is not done for trigger. (Trigger impact is negligible)

Online beamspot measured/used in trigger

L1 Upgrade [Run 3] ·

• L1 Muon

- Coincidence patterns to utilize newly installed detectors (NSWs), resulting in better discrimination against fake muon backgrounds
- ~12 kHz L1 rate reduction
- Activated in all sectors since this year
 - 'Monitored mode' in the commissioning period, activated sectors by sectors once validated with real data

L1 Calo

- New digital readout (SuperCell) providing higher granularity and resolution
 - Better resolution power particularly for electrons
- All new trigger electronics (Feature Extractors)
 - eFEX: isolated e/photon, tau
 - gFEX: jets, tau, missing Et
 - jFEX: large radius jets, missing Et
- Legacy system has been running for 2 years data taking in parallel to commissioning of the new system
 - Gradually migrated to the new triggers once fully validated with real data
 - Last 'legacy' triggers disabled recently in this year

Full-scan tracking at HLT [Run3]

• ML predictor in seeding

Seeding strategy/window optimization

Fraction of Mean Time For PPS Seeds Enabled

Full-scan tracking at HLT [Run3]

Trigger Performance [Run3]

• Electron

• Improved efficiency with L1 eFEX

• Tau • L1 eFEX/jFEX combined, improved isolation Efficiency 0.9 0.8 + L1 Legacy 0.7 +L1 Phase-I Jets **ATLAS** Preliminary Multi-jets upitize fultuscan ostracks, objects much close to Particle Flow (Pflow) objects at offline medium tau 20 40 60 80 100 Offline tau p_ [GeV] • b-jets • Utilizes Pflow jets and tracks and vertex with ML (DNN) algorithms prompt tracks

Trigger level analysis (TLA)

- TLA: record trigger level objects only \rightarrow high rate (relaxed prescale)
 - Can extend physics reach at low p_T/mass regions

Enhancing more physics sensitivity ATLAS Trigger Operations Preliminary [kHz]

120

 \overline{a}

pp data, May 2024, √s = 13.6 TeV

- Trigger menu optimized with physics coordination to achieve
 - Maximum physics output (physics priorities, high efficiency for rare processes, supporting triggers for calibration/efficiency measurements, ...)
 - Keep L1 rate to 95 kHz to minimize the deadtime from readout
 - Total bandwidth within 8 GB/s •
 - -> Menu vs. luminosity/time : constantly fine-tuned according to running conditions and new developments
- Delayed stream
 - Larger recording • bandwidth that undergo event reconstruction only when offline resource allows
 - **B**-physics and • hardonic signatures (such as HH->bbbb. bbtt)

07:00

Trigger operation public results

09:00

11:00 Time [h:m]

TLA: high rates with small bandwidth usage

I 1 rate

···· Luminosit

output bandwidth [GB/s]

누

2

ATLAS Trigg

op data. May 2

Trigger software

- Processing power demand has been increasing (e.g. full-scan calo/track), resulting in that HLT processing power becomes a bottleneck
 - "Luminosity leveling" operation
- Almost complete redesign and rewrite of HLT framework together with significant updates in all HLT software
 - ATLAS software framework adopted to support multi-theading (AthenaM

 - Multi-processing based (ATLAS
 Excellent memory sharit.
 Threading Building Blocks (TBB)
 Threading Building Blocks (TBB) doubling core
 - HLT framework takes full advantage of the AthenaMT scheduler
 - Up to Run2: HLT framework is one single algorithm steering all trigger algorithms

Trigger software

ATLAS Track Trigger

- Hardware track trigger
 - Once tried in Run2 ("FTK") : the aim was for 100 kHz (all L1) full-detector tracking with custom-made electronics
 → project canceled
 - Initial HL-LHC TDR includes an option of hardware track trigger at Event Filter (with possible migration to L1), which was recently updated to either software-only or heterogeneous computing (e.g. commodity acceleration)
 - Tracking software was largely optimized, resulting in a significant reduction in processing time

(a)

26

(b)

Trigger Tracking [HL-LHC]

- A Common Tracking Software "ACTS"
 - Experiment-independent toolkit with modern language (C++)
 - ATLAS, sPHENIX, ePIC, ALICE, NA60+, CEPC, R&D platform
 - Extending to parallelization \rightarrow on GPU
- Exploring CPU, GPU, FPGA based solutions
 - Various R&Ds ongoing toward 'technology choice' decision in the next year
 - Including state-of-the-art tracking algorithm such as using GNN which is getting know to be suitable for tracking

Track Reconstruction Chain

1.

1.

0.8

0.0

0.

0.3

Efficiency

27

Summary

- Completion of Run3 ("Phase-I") Upgrade
 - Full integration of NSW in L1 Muon
 - L1Calo full upgrade
- This year was an important milestone
 - More than 100 /fb collected! (record)

- And, already looking at the future
 - ~200 interactions per bunch crossing (pileup)
 - New inner detector trackers (all silicon)
 - Various R&Ds for increased usage of GPUs and FPGAs both at software and hardware levels
 - Large number of ML techniques already deployed and further being exploited

