

Streaming Readout Workshop

SRO-XII

December 2-4, 2024 University of Tokyo, Japan

Real-Time data reduction with Artificial Intelligence for SRO.

Fabio Rossi (presenter), Marco Battaglieri Istituto Nazionale di Fisica Nucleare Genova (Italy)

Edoardo Ragusa, Paolo Gastaldo SEALab Università di Genova (DITEN) Genova (Italy) Gagik Gavalian Jefferson Lab Newport News (Virginia)

High Energy Physics Experiment: Beam Dump eXperiment (BDX)

Retrieved from: Battaglieri, M., et al. "Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson Lab." arXiv preprint arXiv:1607.01390 (2016).

Traditional triggered DAQ VS Streaming Readout

Block scheme of data flow

Detailed BDX data flow scheme

Data from physical Experiment

Data reduction algorithm: Autoencoder

Machine Learning Algorithm

Dimensionality reduction

Unsupervised learning

Artificial Neural Network

Composed of two function:

- encoding
- decoding

ENCODER DECODER DECODER DECODER Latent Space

FULLY CONNECTED AUTOENCODER WITH DENSE LAYER

Lossy compression algorithm

Autoencoder Training: Different configuration

Autoencoder Training: Different configuration

Autoencoder Training: Different latent space

Compression ratio is a parameter and could be chosed as loss tradeoff

Finanziato dall'Unione europea

Autoencoder: Training time

Signals Compression: Integral and spectrum

Good performance also on the derived quantities for physical analysis

Implementation of Data Reduction Node Xilinx 4 x NVIDIA Tesla V100 GPU XRT **Data Reduction Receive Signal** ALVEO V70 FPGA Compress (Encoder) Transmission Raspberry Pi 4 Rev. B High performance DELL C6400 server (4 x AMD EPYC 7413 24-Core Processor) Low cost hardware

Implementation: GPU

Execution time not enough for the application!

Execution time still not enough for the application!

Implementation: FPGA

Implementation: High performance server

Implementation: High performance server

Conclusion

Comparison with standard lossless compression

Comparison with standard lossless compression

Further Studies

Thank you for your attention

Jefferson Lab

https://www.jlab.org

ACKNOWLEDGMENT

Authors have received support from: FAIR - Future Artificial Intelligence Research, funded by the European Union Next-Generation EU (Italy) Research) – spoke 6.