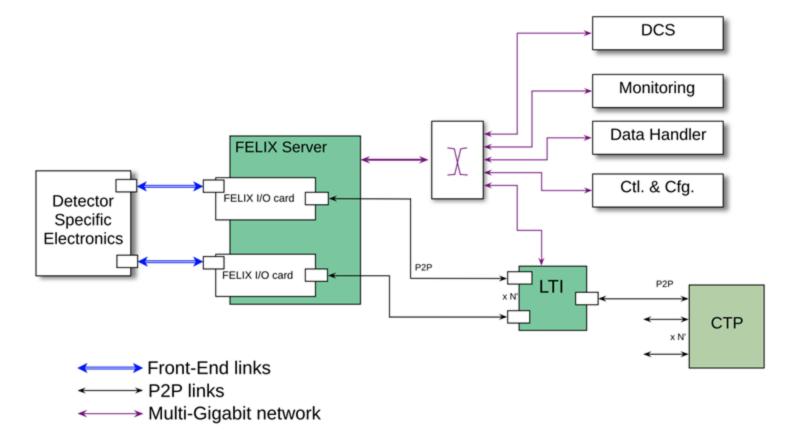


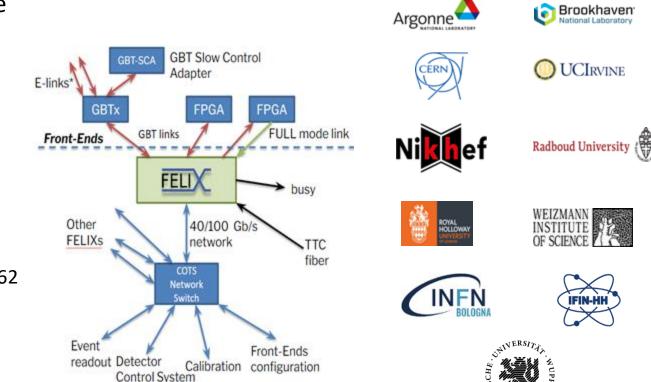
FELIX Hardware Development for Streaming Readout


<u>H. Xu</u>, E. Buschmann, G. Chatzianastasiou, H. Chen, A. Liu, M. Silva-Oliveira, S. Tang

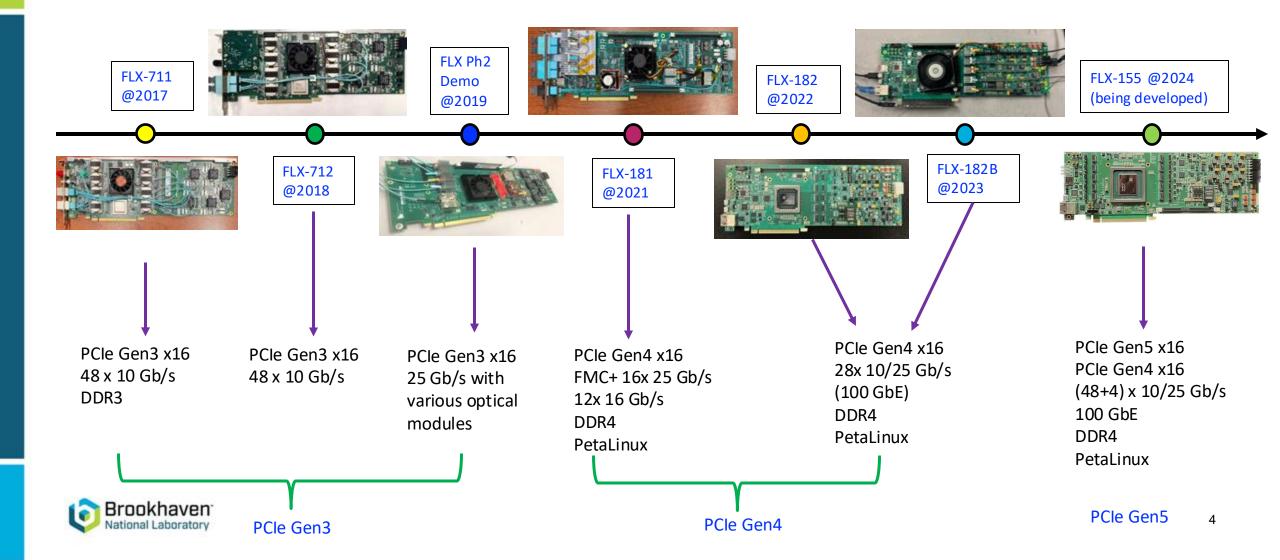
BNL

Streaming Readout Workshop SRO-XII, Dec 2–4, 2024 University of Tokyo

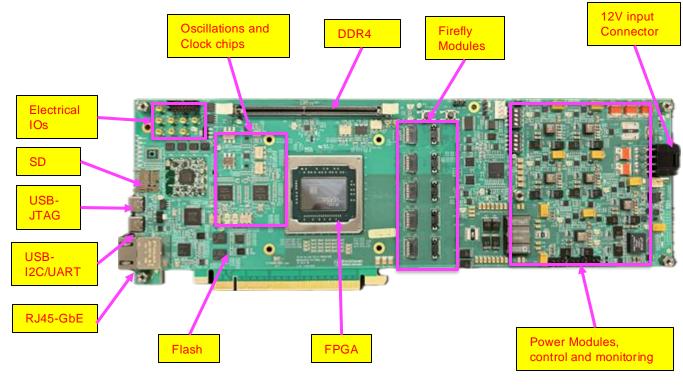
FELIX – Front End Link eXchange



Block diagram of readout system with FELIX


FELIX

- A generic detector readout concept, proposed by ATLAS Collaboration a decade ago, between front-end serial links and a commodity network
- Open-source firmware and software
 - O Collaboration of different institutes
 - ANL, BNL, Bologna, CERN, IFIN-HH Bucharest, Nikhef, RU, RHUL, UC Irvine, Weizmann and Wuppertal
- Applications in HEP and NP experiments
 - O ATLAS Phase-I Upgrade, ProtoDUNE-I and NA62
 - NSLS-II & ANL Light Source, sPHENIX at RHIC,
 SoLID at JLab, and FAIR CBM at GSI, Fermilab
 Test Beam
 - Future applications: ATLAS Phase-II Upgrade, EPIC@EIC, R&D of nEXO/DarkSide, ALICE and LHCb@HL-LHC


FELIX Hardware Development @BNL

FLX-182

- AMD Versal Prime FPGA XCVM1802
- PCIe Gen4 x16/2x8
- 24 FireFly links with 3 possible configurations
 - 24 links up to 25 Gb/s
 - 24 links up to 10 Gb/s (CERN-B FireFly)
 - 12 links up to 25 Gb/s + 12 links up to 10 Gb/s
- 4 FireFly links with 2 possible configurations with 14 or 25 Gb/s FireFly TRx
 - LTI interface
 - 100 GbE
- 1 DDR4 Mini-UDIMM
- USB-JTAG/USB-UART
- Boot: SD3.0/QSPI
- GbE
- White Rabbit
- PetaLinux

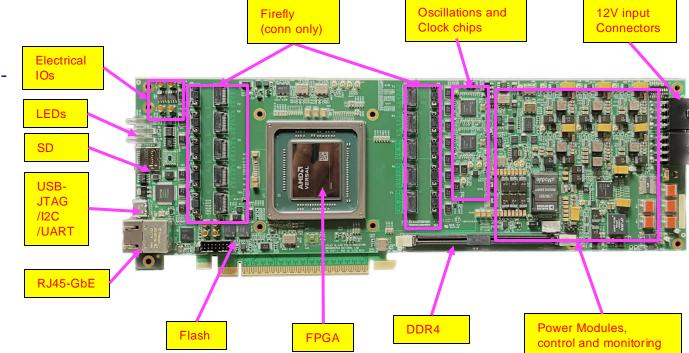
Picture of assembled FLX-182

Status of FLX-182

Hardware functionalities are fully validated

- Total 28 (24+ 4) links @ 25 Gb/s are available for data transmission
- PCIe Gen4 performance
- 2x Gen4x8 endpoints, theoretical payload bandwidth 120.47Gb/s for each endpoint
- 2 x8 endpoints: 2x 113.2 Gb/s, 94% of theoretical bandwidth
- 1 x8 endpoint: 1x 118 Gb/s, 97.9% of theoretical bandwidth
- Different flavors of FELIX firmware have been implemented, and functionality demonstrated
- 50+ FLX-182 cards have been produced for different HEP and NP experiments
 - ATLAS Phase-II Upgrade, ALICE at CERN, and CERN DRD7 hardware platform
 - ePIC at EIC
 - sPHENIX at RHIC
 - CBM/RE21 at FAIR

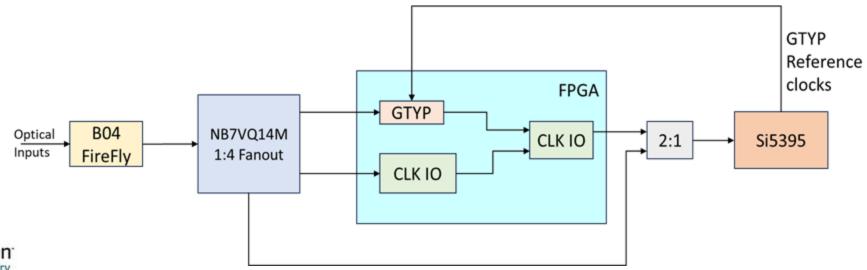
Picture of FLX-182 cards



FLX-155

Main features of FLX-155

- AMD/Xilinx Versal Premium FPGA: XCVP1552-2MSEVSVA3340
- PCIe Gen4 x16 / PCIe Gen5 2x8
- 56 FireFly optical links
 - Compatible with various options
 - Default configuration for ATLAS
 - 48 data links up to 25 Gb/s
 - 0 4 links for LTI
 - 4 links for 100GbE
- Electrical IOs
- 1 DDR4 Mini-UDIMM
- USB-JTAG/USB-UART
- SD3.0/QSPI
- GbE
- White Rabbit



Picture of assembled FLX-155

TTC Clock Scheme

- Either recovered clock from TTC link, or clock from optical directly
- Recovered clock from TTC link
 - Connected to GTYP to get recovered clock as system clock
 - 4 TTC links on one B04
- Optional optical clock
 - To use the optical clock as system clock directly
 - One RX of B04 is connected to FPGA clock input. In this case, only 3 RX links left are connected to GTYP

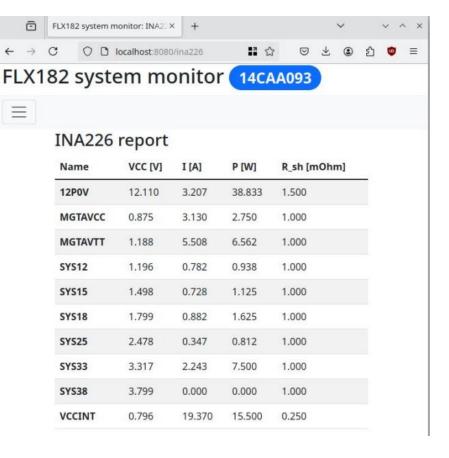
Status of FLX-155

- One FLX-155 has been produced and being tested at lab
 - All functions work properly except minor issue with DDR4 memory
 - All GTYP optical links have been verified with 25Gb/s
 - PCIe Gen5 2 x8 performance have been evaluated
 - PCIe Gen5 2 x8 endpoints, theoretical payload bandwidth 256Gb/s for each endpoint
 - The throughput is 29.567 GB/s = 236.5 Gb/s, 92.4% theoretical maximum speed
 - Taking head in the test data into account, it is 98% of theoretical maximum speed


```
WHILE CHECKING CHE GALA (DIOCKHEAGE) AND CLAILERS
Also counts chunk CRC errors.
Opened FLX-device 0, firmw FLX120-GBT-2x24CH-240306-1750-GIT:rm-5.1/191, trailer=32bit, buffer=1024MB, DMA=0
Opened FLX-device 1, firmw FLX120-GBT-2x24CH-240306-1750-GIT:rm-5.1/191, trailer=32bit, buffer=1024MB, DMA=0
**START**
** using DMA #0 nolling
  Secs
         d-D
              Recvd[MB/s]
                             File[MB/s]
                                           Total[(M)B]
                                                         Rec[(M)B]
                                                                     Buf[%]
     1
         0-0
                   31631.6
                                     0.0
                                               31631.6
                                                                          50
                                                                                  29
   ### @Dev-DM_=0-0 Blocks 30408704 Errors: header=30639640 trailer=0 (trunc=0 err=0 length=0 type=0 crc=0)
                   29574.0
     1
       1-0
                                     0.0
                                               29574.0
   ### @Dev-DM_=1-0 Blocks 28547055 Errors: header=28547055 trailer=0 (trunc=0 err=0 length=0 type=0 crc=0)
         0-0
                   29567.8
                                     0.0
                                               61199.3
                                                                                  56
     2
   ### @Dev-DM_=0-0 Blocks 50460477 Errors: header=59460477 trailer=0 (trunc=0 err=0 length=0 type=0 crc=0)
     2
         1-0
                   29567.8
                                     0.0
                                               59141.8
                                                                                  55
   ### @Dev-DM_=1-0 Blocks 57543329 Errors: header=57543329 trailer=0 (trunc=0 err=0 length=0 type=0 crc=0)
         0-0
                   29567.6
                                     0.0
                                               90766.9
                                                                          20
     з
                                                                                  84
                                                                 а
   ### @Dev-DM_=0-0 Blocks 88487291 Errors: header=88487291 trailer=0 (trunc=0 err=0 length=0 type=0 crc=0)
                   29567.5
                                     0.0
                                               88709.2
         1-0
                                                                          66
               =1-0 Blocks 85983232 Errors: header=86382970 trailer=0 (trunc=0 err=0 length=0 type=0 crc=0)
   ### @Dev-DM
```


PetaLinux

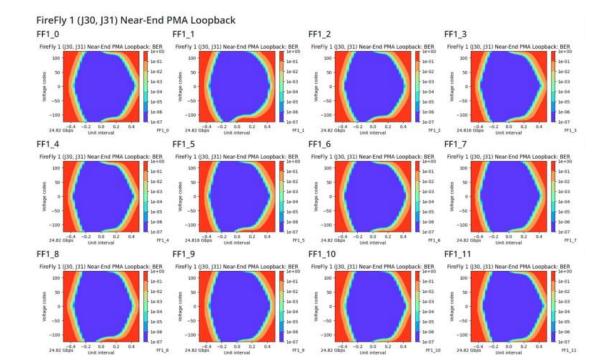
- Arm cores in Versal Prime/Premium FPGA
 - Dual-core Arm Cortex-A72 Application Processor
 - Up to 1.7 GHz for 2X single-threaded performance
 - Dual-core Arm Cortex-R5 Real Processor
 - Up to 750 MHz for 1.4X greater performance
- The PetaLinux Tools offers everything necessary to customize, build and deploy Embedded Linux solutions on AMD processing systems
- PetaLinux can run successfully on Versal FPGA
 - Boot loader
 - CPU-optimized kernel
 - Linux applications & libraries
 - C & C++ application development
 - Integrated web server for easy remote management of network and firmware configurations



Petalinux 2024.1

System Monitoring and Self-test

- BIST: A Built-In Self-Test package with firmware and software for FELIX card has been developed by BNL
- ARM Cortex-A72 CPU on Versal boots Linux from SD card
 - Device drivers are already available for most peripherals
 - May use standard utilities for tests, firmware updates, remote management and more
- Web application
 - Sensor monitoring and peripheral configuration in an easy, convenient way
 - Rapid development with Python
 - Flexible configuration to support any board (requires a CPU, DRAM and storage)
- Status of key components through I2C bus
 - FireFly
 - DDR4
 - Power supply
 - Voltage and current: INA226
 - Temperature: TMP435



Web-based BIST for FLX-182

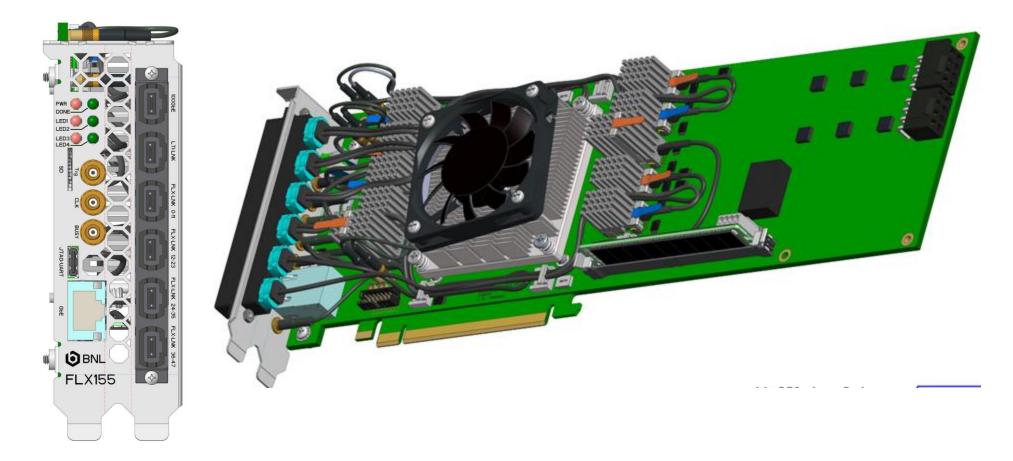
BIST for Production Test

- Finish production test and generate test report automatically
- Upload test results to DB once test is done

+ (27.0.0.1/45345		9	1 12	¢ 🔹					5
X18	2 sys	stem m	onitor	10 C							
(pheists	· Chipses	py + University	r 1008								
\$153	45 re	port									
si534	45_a (L	J46) (20M	node								
• Cal • Cu		co: 13.948 GHz IN_SEL[1:0] = 1									
Inpu	ts										
Name	ame Expected Frequ		sency [MHz]			Status	6				
114,0		125.0									
11,1		40.00				(SUN)	-				
11,2		0.0									
IN,3		0.0									
XAXE		48.0				œ		•			
Outp	outs										
Name	Calculate (MHz)	ed Prequency	Enabled	Format		Disabled state	ŝ.	Stat			
01/10	40.080		•	Swing mode (normal swing) differential		LOW		C			,
OUTI	40.080		0	Swing mode (normal swing) differential		ιów		C			9
OUT2	40.080		0	Swing mode (normal swing) differential		LOW		C		-	
OUTS	40.080		0	Swing mode (normal swing) differential		LOW		C	-		3

Development Plan

- FLX-155 revision is being planned
- The revision design will be finished in about 6 months, and the test will be done in 2 months once it's delivered
- New FLX-155 cards are expected to be available for users in 2025 fall



Summary

- The FELIX is a generic platform for streaming readout, which has been and is going to be tested by several experiments - ATLAS at CERN, ePIC at EIC, sPHENIX at RHIC, LHCb at CERN, ALICE at CERN, CBM/RE21 at FAIR
- FLX-182 and FLX-155 have been developed for FELIX phase-II hardware platform. FLX-155 revision will be available for user in 2025 fall

Thanks for your attention!

