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Certain aspects of experiments are costly and error prone.

Calibration

Usually done after data taking, 
with a timescale on the order 
of months to years. As a 
result, there is a significant 
delay between data collection 
and publication. 

Subsystem operation

Can require human attention 
and manual intervention.

Detector/Data Monitoring

Requires constant human 
attention.
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Can we develop and deploy an AI system to 
autonomously adjust detector controls during data 
acquisition in order to reduce or eliminate the need 
for offline calibrations?
AI for Experimental Controls Proposal 
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https://wiki.jlab.org/epsciwiki/images/e/e6/20200824_AI_Experiment_Controls_Proposal.pdf


Main objectives

Uniform gain

Can we train a model to 
determine calibration 
constants as quickly as 
possible? From those 
calibration constants, can we 
recommend a HV setting to 
stabilize the chamber gain?

Reduced expert time 

Reduce the number of offline 
iterations required for 
satisfactory dE/dx and timing 
resolution


Extend to other detector 
systems

Build an overall control system 
that can be used for other 
detector components
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Challenges with deploying ML based software

Higher technical risk 

How to define “good enough” 
performance? What model 
architecture to use? Variable 
data needs and quality? 
Limitations of AI/ML based 
solutions

Expanded skill set/workforce

Introducing ML based 
solutions for NP tasks requires 
a broader set of skills and 
team members


Require change

The control system we 
develop would change the 
standard operation of the 
detector
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Gluonic Excitations 
Experiment

Located in Hall-D at Jefferson Lab, 
GlueX was designed to search for and 
measure exotic hybrid mesons produced 
in photo-production reactions
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GlueX Central Drift Chamber
Used to detect and track charged particles 
as they traverse the detector



Specs�
� 1.5 m long x 1.2 m diameter, cylindrical 

straw tube chambe�
� 3522 anode wires traditionally held at 

2125 �
� 50:50 Ar:CO2 gas mixture at 30 Pa 

above atmospheric pressure



Calibrations (run-by-run):�
� Chamber gai�
� Drift time to drift distance
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Chamber gain

The gain determines the size of the 
avalanche and, therefore, the height of 
the pulse recorded.  

This affects both the measured 
amplitude used in particle identification 
and the measured drift time used to 
determine the particle’s momentum.
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ML Control System Design

There are several design choices and 
requirements that determine what the 
ML system might look like



For our use case, we want quick 
inference times and readily accessible 
input features. For monitoring purposes, 
we want to clearly convey input 
features, inferences, and control 
decisions to the shift crew and detector 
experts. 
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ML system status

Observations

Balanced for High, Medium, and Low 
pressure runs

80/20 train test split

Model architectures

LR, ANNs, XGBoost, GPs

Offline training

Online inference

Iterations of control system

Actively maintained by EPSCI group

601
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Architectures + Performance

GlueX has an extensive calibration and 
conditions database which can be used 
for training models to predict calibration 
values



Initial feature set included slow controls 
data, reconstructed quantities, and 
engineered features
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Gaussian process was chosen based o�
� Performanc�
� Quick training and inference time�
� “Out-of-the-box” uncertainty 

quantification

Gaussian processes
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Input features: environmental and 
experimental data from EPICS archiv�

� Gas temperatur�
� Current drawn from the HV board�
� Atmospheric pressure



Target: Gain calibration constants from 
previous experiments



Kernel: Radial basis function + White 
Noise

Training

Gaussian process
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Having an uncertainty estimate on our 
predictions is a requiremen�
� Control policie�

� when model is uncertai�
� when HV setting is detected 

outside of allowed operational zon�
� Informs when the model may need to 

be retrained



From an operations standpoint, we do not 
distinguish between epistemic or aleatoric 
uncertainty

Control

Policies
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High voltage scans are conducted at 
regular intervals during each operational 
period.   

This data is used to establish the optimal 
HV setting required to maintain chamber 
gain stability and performance.

Control

High Voltage 
Recommendation
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Shift takers are able to toggle the control 
aspect ON/OFF  

Even when control is OFF, we record the 
actions the system would take.

Monitoring

CDC Control GUI
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All input features, inferences, and actions 
are logged for further analysis regardless 
of whether control is  or ON OFF

Monitoring

Grafana Interface



First deployments

PrimEx - 2021

Shift crews ran script to run model inference 
and adjusted HV (rounded to nearest 5V) 
manually before starting new run.

Charged Pion Polarizability - 2022

Script was run via DAQ GO. Experimental 
conditions (beam current, target type and 
position) were quite different from our training 
data. 

5% threshold
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Cosmic ray tests

Split chamber in half via software

One side held at , other side  
every 5 minutes

fixed HV adjusted

Stabilized gain 

The variation in the gain for the “constant HV” 
side was caused by a well-timed thunderstorm.
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More deployments

GlueX 2023

Faulty pressure sensor, nearly all controlled 
runs were within our 5% threshold. 

PrimEx II - 2022

Nearly all controlled runs fall within our 5% 
threshold. 

5% threshold
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Time-to-distance
Existing drift time to drift distance 
parameters are strongly correlated with the 
gas density



We can automatically generate these 
calibration values from fits to the gas 
density and reduce the number of iterations 
required 
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Time-to-distance
Tuning HV to stabilize the gain results in 
comparable performance to those runs 
taken at 2125 V



This alleviates any concern that adjusting 
the HV to stabilize the gain might 
negatively impact the timing resolution
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Extensions to other detector systems

GlueX Forward Calorimeter

Aimed to generate calibration 
values using the light 
monitoring system, 
unsuccessful due to lack of 
correlations between existing 
gain values and amplitudes

GlueX Forward Drift 
Chambers

Chamber gain is also strongly 
correlated with atmospheric 
pressure. Can use linear 
regression or a GP to obtain 
calibration values at the start 
of each run. 

CLAS12 Drift Chambers

Not pursued due to lack of 
enough historical calibration 
data 
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In Summary

Predict calibration 
values without relying 
on track reconstruction



This enables us to 
generate calibration 
values during data taking 
while ensuring stable 
detector operation and 
performance

An UQ-aware control 
system is now standard 
operation for GlueX



MLOps becomes critical 
to ensure model 
performance, detect data 
drift, and performance 
degradations 

A team of scientists with 
complementary skills is 
critical



Continued collaboration 
will be essential for new 
AI/ML based solutions for 
current and future 
experiments
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“The mostly uniform gain is great because it ensures that the 
yields in our monitoring plots don’t change drastically because 
the proton band moved below the analysis selection, and also 
because it ensures that minimum ionizing particles stay above 

the detection threshold. The biggest effect of data quality is 
not having hits from the same type of tracks disappear below 
threshold or saturate the adc depending on the weather of the 

day”

Naomi Jarvis · CDC Expert
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Resources
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AIEC Final Report
Extensive paper covering entire project: https://arxiv.org/
pdf/2402.13261

AI4EIC2023 Proceedings
Shorter description: https://arxiv.org/pdf/2403.13823

https://arxiv.org/pdf/2402.13261
https://arxiv.org/pdf/2402.13261
https://arxiv.org/pdf/2403.13823
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AIEC Team
Work started in April 2021



Strong ties to Data Science Department and 
Physics Division
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Cosmics

Full automation tests with 
half of detector HV adjusted 
autonomously every 5 min



Observed stable gain for ML 
controlled side of CDC

PrimEx-II 2022

Added an “auto-off” function 
to roboCDC to detect empty 
target runs and human tests

CPP 2022

RoboCDC run from DAQ “GO” 
processes without 
intervention from shift crew



Stable performance despite 
out of domain input features



Control ON/OFF toggle added 
to CDC HV GUI

GlueX 2023

Problems with atmospheric 
pressure sensor resulted in 
less controlled runs. 



Stable performance was 
achieved with new pressure 
sensor installation.

PrimEx 2021

Shift crew manually ran 
roboCDC script and adjusted 
HV

Deployment timelines
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