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Fast ML on FPGA for Particle Identification and Tracking
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Outline

q Report on ML-FPGA developments for 2 nuclear physics experiments.

Ø EIC - new Electron-Ion Collider under construction at BNL.

Ø GlueX - experiment located at the Thomas Jefferson National Accelerator Facility (JLab) 
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Electron Ion Collider (EIC)
q The Electron-Ion Collider, a new facility for nuclear 

physics research to be located at Brookhaven Lab, 
will allow scientists from across the nation and 
around the globe to peer inside protons and 
atomic nuclei to reveal secrets of the strongest 
force in nature. 

q Research at the EIC will take our understanding of 
matter to the next level—beyond the interactions 
of atomic nuclei with their orbiting electrons, 
which power the electronic and information 
technologies we now use every day, to the forces 
acting inside the nucleus.
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EIC  streaming readout as motivation for ML-FPGA 
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✦ The correct location for the ML on the FPGA 
filter is called "FEP" in this figure.

✦ This gives us a chance to reduce traffic earlier.

✦ Allows us to touch physics: ML brings 
intelligence to L1.

✦ However, it is now unclear how far we can go 
with physics at the FPGA.

✦ Initially, we can start in pass-through mode.

✦ Then we can add background rejection.

✦ Later we can add filtering processes with the 
largest cross section.

✦ In case of problems with output traffic, we can 
add a  selector for low cross section processes.

✦ The ML-on-FPGA solution complements the 
purely computer-based solution and mitigates 
DAQ performance risks.
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Generic EIC R&D project RD15, ML-(on)-FPGA
q The goal is to build a demonstrator that can operate under  beam test conditions in real-time.
q The setup consists of several PID and tracking detectors: emCAL, GEMTRD, GEM tracker.
q Preprocessed data from detectors including decision on the particle type will be transferred to another ML-FPGA board with neural 

network for global PID decision. 
q The global filter transfers data to off-line computer farm, running  JANA2 software.
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GEMTRD
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Tracking
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Filter

Low latency filter
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High Level
Event 

Reconstruction

Computer farm

emCAL
ML-FPGA

PID
emCAL

Team : 
F. Barbosa,  L. Belfore, N. Branson, N. Brei, C. Dickover,  C. Fanelli,  
D. Furletov, L. Jokhovets, D. Lawrence,  C. Mei, D. Romanov, K. Shivu
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FPGA test board for ML 

• At an early stage in this project, as hardware to test ML 
algorithms on FPGA , we use a standard Xilinx evaluation boards 
rather than developing a customized FPGA board. These boards 
have functions and interfaces sufficient for proof of principle of 
ML-FPGA. 

• The  Xilinx evaluation board includes the Xilinx XCVU9P and  
6,840 DSP slices. Each includes a hardwired optimized multiply 
unit and collectively offers a peak theoretical performance in 
excess of 1 Tera multiplications per second.

• Second, the internal organization can be optimized to the 
specific computational problem. The internal data processing 
architecture can support deep computational pipelines offering 
high throughputs. 

• Third, the FPGA supports high speed I/O interfaces including  
Ethernet and 180 high speed transceivers that can operate in 
excess of 30 Gbps.

Xilinx Virtex® UltraScale+™
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GEM-TRD  prototype for EIC R&D
• To demonstrate the operating principle of the ML FPGA, we use the existing setup 
• from the EIC detector R&D project 
• A test module was built at the University of Virginia
• The prototype of GEMTRD/T module has a size of 10 cm × 10 cm with a 

corresponding to a total of 512 channels for X/Y coordinates. 
• The readout is based on flash ADC system developed at JLAB (fADC125)  @125 MHz 

sampling.

• GEM-TRD provides e/hadron separation and tracking
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GEM-TRD principle

GEM-TRD can work as micro TPC, providing 3D track segments
q The e/pion separation in the GEM-TRD 

detector is based on counting the ionization 
along the particle track.

q For electrons, the ionization is higher due to 
the absorption of transition radiation photons

q So,  particle identification with TRD consists of 
several steps:

Ø The first step is to cluster the incoming 
signals and create "hits".

Ø The next is "pattern recognition" -
sorting hits by track.

Ø Finding a track
Ø Ionization measurement along a track
Ø As a bonus, TRD will provide a track 

segment for the global tracking system.
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GEMTRD  tracks
q In a real experiment, GEMTRD will have multiple tracks.
q So we also need a fast algorithm for pattern recognition 
q As well as for track fitting.
q The decision was made to try the Graph Neural Network (GNN) for pattern recognition.
q And a recurrent neural network – LSTM,  for track fitting.

Javier Duarte 
arXiv:2012.01249v2 [hep-ph] 7 Dec 2020 

q HEP advanced tracking algorithms 
at the exascale (Project Exa.TrkX)

q https://exatrkx.github.io/

https://exatrkx.github.io/
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GEMTRD  tracks
q In a real experiment, GEMTRD will have multiple tracks.
q So we also need a fast algorithm for pattern recognition 
q As well as for track fitting.
q The decision was made to try the Graph Neural Network (GNN) for pattern recognition.
q And a recurrent neural network – LSTM,  for track fitting.
q PID is based on measuring ionization along the track.

Javier Duarte 
arXiv:2012.01249v2 [hep-ph] 7 Dec 2020 

q HEP advanced tracking algorithms 
at the exascale (Project Exa.TrkX)

q https://exatrkx.github.io/

https://exatrkx.github.io/
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GNN for pattern recognition
q Graph Neural Networks (GNNs) designed for the tasks of hit classification and segment classification. 

Ø These models read a graph of connected hits and compute features on the nodes and edges.
q The input and output of GNN is a graph with a number of features for nodes and edges.

Ø In our case we use the edge classification
q A complete graph on N vertices contains N(N - 1)/2 edges.

Ø This will require a lot of resources which are limited in FPGA. 
q To keep resources under control, we can construct the graph for a specific geometry and limit the minimum particle momentum.
q In our case we have a straight track segments, with a quite narrow angular distribution ~15 degree.
q Thus, for the input hits (left), we connect only those edges that satisfy our geometry and the momentum of most tracks (middle)
q The trained GNN processes the input graph and sets the probability for each edge as output.
q The right plot shows edges with a probability greater than 0.7
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GNN performance 
q This type of graph neural network is not yet 

supported in HLS4ML.
q So we did a manual conversion first to C++ and then 

to Verilog using Vitis_HLS. 
q This neural network has not been optimized/pruned, 

so it consumes a lot of resources - 70% of DSPs, 
(4651 of 6840). 

Ø Network use precision ap fixed < 16,9 >
Ø At the moment it can serve up to 21 hits and 42 

edges, or ,  in our case (GEM-TRD),  it will be 3-5 
tracks.

q However, it performs all calculations in ~3 µs (left 
plot) (thanks to Ben Raydo), providing good purity 
and efficiency (right plot). 
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RNN/LSTM for track fit

q The hits sorted by tracks from the pattern recognition GNN are fed into another neural network 
trained to fit the tracks.

q We use RNN/LSTM neural networks. ( thanks to Dylan Rankin for help )
Ø Network use precision  ap fixed < 24,11 >
Ø The input layer is designed for 26 hits.
Ø The work on optimization of NN is ongoing.

q The LSTM network after pruning consumes 19% of the DSP resources and has a latency of 1 µs.
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MLP  neural network for PID

Latency = 65ns

II = 5ns

DSP utilization 3%

q After the track is fit,  the ionization along the track can 
be counted. 

q The distance along the track is divided into 10-20 bins, 
and the ionization energy in these bins is fed to the input 
of the MLP neural network. 

q Typically neural network weights often have many zeros, 
thus, it is possible to reduce the size of the network by 
removing weights close to zero (~50%)

q The  network performance near the working value of 
90% efficiency.
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Board design
q All data I/O operations are performed by Control IP
q MicroBlaze is only used to configure the board and monitor data processing.
q Aurora interface provides communication with a second FPGA board that processes the calorimeter data (CNN).
q 10 Gigabit Ethernet uses TCP/IP, receives data from detectors (DAQ) and sends pre-processed data to the computer (farm).
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Latency and rates (very preliminary) 

q Control IP manages data traffic between NN-IP  and the Ethernet interface. 
q The IP block was synthesized directly using Vitis_HLS, the total latency is about ~20 µs (~50 kHz).
q Control  IP block primarily performs serial I/O 

Ø Therefore, it consists of long loops designed to accommodate the maximum data size. 
q In reality, the average data size is much smaller, so the actual speed should be higher. 
q This was confirmed in measurements - peak performance reached 80 kHz.
q This is the first version, not yet optimized and II violations have not been fixed.
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FPGA board resources for GEMTRD

q Neural networks use a lot of FPGA resources.
q Therefore, one VCU118 board can only process 

data from GEMTRD.
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Test setup at CERN SPS/H8 beam line
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Beam structure and rate

q Spill Duration: 4.8 s.
q Repetition rate: 10 - 40 s.
q Energy: 20 GeV
q Trigger rate during spill: 300-400 Hz
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Tracking performance
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 Clusters for FPGA 
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 ML-FPGA response
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 ML-FPGA response

q Top rows: show ionization along the 
track in GEMTRD detector.

Ø Red circles are reconstructed 
clusters using some dE/dx 
threshold. The size is 
proportional to energy.

q Middle rows: after filtering out the 
noisy clusters, the coordinates of the 
clusters are sent to the FPGA/GNN 
for pattern recognition.

q Bottom rows: GNN provides labeling 
of clusters (by color in the figure), the 
same colors belong to the same 
track.

q Then clusters of the same color (tag) 
are sent to the track fitting module: 
LSTM.

q The results of track fitting are 
represented by lines in the figures.

q The next step is to count all the 
ionization in the corridor around the 
track and send it to the PID module 
(DNN).

q As a bonus, GEMTRD provides a track 
segment for the global tracking 
system.

z (drift time, 8ns FADC)
y (r/o strip, 0.4mm)
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ML for Calorimeter



Calorimeter parameters reconstruction
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Examples of events with e and π−

showers and μ− passing through.
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Convolutional variational autoencoder

• Convolutional VAE as a backbone
• Modules deposits as inputs
• Per cluster output of multiple values:
• Energy, e/ π, coordinates, features 

By Dmitry Romanov
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CNN for calorimeter reconstruction
✦ In this work we used a convolutional encoder with a decoder consisting of 

dense layers, which provide e-π separation scores as the output. 
✦ Synthesized with HLS4ML,  for calorimeter 11x11 cells.
✦ This was done to minimize a network size in FPGA and due to current 

limitation of HSL4ML of supported network layer types. 
✦ FPGA synthesis with reuse factor of 1 has a latency of 0.7μs and an interval 

of 125 clocks. It uses 74% of DPS resources 
✦ Network use precision  ap fixed < 20,10 >
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Calorimeter CNN optimization with HLS4ML
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hls_config['Model']['Precision'] = 'ap_fixed<20,10>'
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JANA2  for ML on FPGA

Pre-processed data from the FPGA is transferred over the 
network (TCP/IP)  to a computer running JANA2 software.



12/03/24 Sergey Furletov                             Streaming Readout Workshop SRO-XII,  University of Tokyo 26

JANA4ML4FPGA

Validation software

Detector

FPGA

JANA2
(JLab ANAlysis framework)

- JANA2 is a multi-threaded modular event reconstruction 
framework being developed at Jlab for online and offline 
processing

- JANA2 is a rewrite based on modern coding and CS practices. 
Developed for modern NP experiments with streaming 
readout, heterogeneous computing and AI

- JANA2 is the main framework chosen for EIC. Used for ePIC
collaboration reconstruction and further Detector 2. Used in 
multiple Jlab experiments and prototypes
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JANA4ML4FPGA

JANA4M
L4FPGA

EVIO

ROOT

FPGADetector

Goals:

- Read and write EVIO 

- Write flat ROOT files

- Receive EVIO by TCP (and save)

- Receive network streams 

- Receive FPGA data

- Simulate sending detector data

- Data Quality Monitor

- AI streaming preprocessing

- Conventional preprocessing
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Tracking for GlueX experiment
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GlueX  experiment
q GlueX is a particle physics experiment 

located at the Thomas Jefferson 
National Accelerator Facility (JLab) 
accelerator in Newport News, Virginia. 

q Its primary purpose is to better 
understand the nature of confinement 
in quantum chromodynamics (QCD) by 
identifying a spectrum of hybrid and 
exotic mesons generated by the 
excitation of the gluonic field binding 
the quarks. 

q Hall D is dedicated to the operation 
with a linearly-polarized photon beam 
produced by ~12 GeV electrons from 
CEBAF at Jefferson Lab.

q Typical  L1 trigger rate 40-70 kHz
q Data rate 0.7 – 1.2  GB/s
q L1 Trigger latency 3.5 us.
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Tracking for GlueX experiment
q The first target for implementing neural 

network-based tracking is the Forward Drift 
Chamber (FDC).

q The GlueX experiment has relatively low 
occupancy:

q Number of hits/event:
Ø (Q25, Q75, Max) = (50, 70, 558)

q Number of tracks/event
Ø (Q25, Q75, Max) = (4, 6, 11)

q This, in principle, makes it possible to fit a 
neural network in existing FPGAs.

q The FDC consists of 4 modules, each 
consisting of 6 planes, providing up to 24 
points per track.

q The FDC is placed in a magnetic field, so the 
particles move in a helical trajectory.

Team:
Ahmed Mohammed, Kishansingh Rajput, Simon Taylor, 
Sergey Furletov, Denis Furletov, Malachi Schram

FDC
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Tracking for GlueX experiment
q The first target for implementing neural 

network-based tracking is the Forward Drift 
Chamber (FDC).

q The GlueX experiment has relatively low 
occupancy:

q Number of hits/event:
Ø (Q25, Q75, Max) = (50, 70, 558)

q Number of tracks/event
Ø (Q25, Q75, Max) = (4, 6, 11)

q This, in principle, makes it possible to fit a 
neural network in existing FPGAs.

q The FDC consists of 4 modules, each 
consisting of 6 planes, providing up to 24 
points per track.

Ø 6 tracks x 24 hits/trk = 144 hits
q The FDC is placed in a magnetic field, so the 

particles move in a helical trajectory.

Team:
Ahmed Mohammed, Kishansingh Rajput, Simon Taylor, 
Sergey Furletov, Denis Furletov, Malachi Schram

FDC
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Event Display
q The FDC geometry with 6 closely spaced planes 

and large distances between modules makes it 
difficult to directly use GNN for pattern 
recognition in a magnetic field, see event display 
on the right.

q Moreover, a large graph uses too many FPGA 
resources – need to process > 150 hits.

q Better results are achieved by using a two-stage 
reconstruction: 

Ø in first GNN, the track segments in each 
module are reconstructed and fitted with a 
straight line, 

Ø and then the resulting vectors are fed into a 
second GNN to reconstruct the full track.
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Event Display
q The FDC geometry with 6 closely spaced planes 

and large distances between modules makes it 
difficult to directly use GNN for pattern 
recognition in a magnetic field, see event display 
on the right.

q Moreover, a large graph uses too many FPGA 
resources – need to process > 150 hits.

q Better results are achieved by using a two-stage 
reconstruction: 

Ø in first GNN, the track segments in each 
module are reconstructed and fitted with a 
straight line, 

Ø and then the resulting vectors are fed into a 
second GNN to reconstruct the full track.
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Processing with FPGA

q The FDC geometry with 6 closely spaced planes 
and large distances between modules makes it 
difficult to directly use GNN for pattern 
recognition in a magnetic field, see event display 
on the right.

q Better results are achieved by using a two-stage 
reconstruction: 

Ø in first GNN, the track segments in each 
module are reconstructed and fitted with a 
straight line, 

Ø and then the resulting vectors are fed into a 
second GNN to reconstruct the full track.

q In this way, FDC modules are processed in 
parallel and the FPGA resource usage is 
significantly reduced.

GNN FPGA GNN FPGA GNN FPGA GNN FPGA

GNN FPGA
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Reconstruction of track segments  in FDC
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Original  hits projections in FDC: x-z and x-y

Reconstructed track segments.
Currently we work in 2D, with only one projection: x-z.
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GNN tracking performance
q The bottom left  figure shows the efficiency of segment 

reconstruction.
q The bottom right figure shows the efficiency of full 

track reconstruction.
q The relatively low efficiency for the full track is 

explained by the presence of low momentum tracks, 
and hence high curvature, for which single projection is 
not efficient. (top right)

q In the future we plan to work in 3D.
q For now we will move forward with the implementation 

of the current 2D model on FPGA.
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New GNN for FDC tracking

● Trained three (3) keras neural 
networks

● Using `hls4ml` library, convert each 
of the three (3) networks into 
separate C++ projects

● Manually/Script rename project files 
to append “myproject<_type>.*” 
where <_type> is any of [ _i, _n, _e ]

● Wrapper project to retrieve data 
from stream and custom functions 
to build B and M matrix values

● Call each network within this 
`runner` top function

input
network

[2] -> [8]

edge
network

[10+10] -> [1]

Iterates over each 
edge, gets 
parameters of src
and dst hits to pass 
into network

node
network

[10+10+10] -> [8]

Iterates over each 
node, gets weighted 
sum of inbound and 
outbound nodes

X / hits
[NHITS,2]

ei / e_index
[NEDGES,2]

H / hidden
[NHITS,10]

e / edges
[NEDGES]

<new>
e / edges
[NEDGES]

B builder

NEDGES  -> 
[10], [10]

M builder

NHITS      -> 
[10], [10]

ei

<new>
H / hidden
[NHITS,10]

*Aggregation

“Message 
passing”

Runs over N 
iterations, final 
output is here

q The results shown look good, but we are still limited to 30 hits/nodes in the network, while FDC requires at least 100 nodes.
q We started designing a new GNN network capable of handling 150 nodes and 256 edges.
q The new GNN  design uses the layer library from HLS4ML with a custom wrapper and aggregation functions.
q Also removed all dependency to external libraries – Hep.TrkX and sonnet from DeepMind.
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Optimized GNN  IP

q The GlueX trigger rate is up to 70 kHz, so on average we have ~14 µs to process events.
q We optimized the GNN to have a latency of ~10 µs, which allows it to operate at 70 kHz.
q On the other hand, the neural network fits in an FPGA and supports 150 nodes and 256 edges.
q Next we plan to test it on hardware.
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Outlook
q An FPGA-based Neural Network application would offer online event preprocessing  and allow for data reduction based on physics 

at the early stage of data processing.
q The ML-on-FPGA solution complements the purely computer-based solution and mitigates DAQ performance risks.
q FPGA provides extremely low-latency neural-network inference.
q Open-source HLS4ML software tool with Xilinx® Vivado® High Level Synthesis (HLS)  accelerates machine learning neural network 

algorithm development.

q The ultimate goal is to build  a real-time event filter based on physics signatures.
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Backup



Xilinx VPK180  board
41
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ADC based DAQ for PANDA STT

6. June 2018 Seite 
42

• 160 Amplifiers;
• 5 connectors for 32-

pins samtec cables

Level 0  Open VPX Crate
ADC based DAQ for PANDA STT (one of approaches):
• 160 channels (shaping, sampling and processing) 

per payload slot, 14 payload slots+2 controllers;
• totally 2200 channels per crate;
• time sorted output data stream (arrival time, energy,...)
• noise rejection, pile up resolution, base line correction, ..

Powerful Backplane 
up to 670 GBs

L. Jokhovets, P Kulessa ..

• 40 4-channel ADCs 
(configurable up to 1 GSPS);

• Single Virtex7 FPGA

✦ All information from 
the straw tube tracker 
is processed in one unit.

✦ Allows to build a 
complete STT event.

✦ This unit can also be 
used for calorimeters 
readout and processing.

https://doi.org/10.1088/1748-0221/17/04/C04022
2022_JINST_17_C04022

https://doi.org/10.1088/1748-0221/17/04/C04022
https://doi.org/10.1088/1748-0221/17/04/C04022
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Step 1: Input Network

input
network

[2] -> [8]

X / hits
[NHITS,2]

H / hidden
[NHITS,10]

Input data are 
the clouds

Stores the node 
information, 10 
parameters, 8 hidden and 
2 original.
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Step 2a: Iterations (edge)

edge
network

[10+10] -> [1]

Iterates over 
each edge, 
gets 
parameters 
of src and dst
hits to pass 
into network

ei / e_index
[NEDGES,2]

H / hidden
[NHITS,10]

e / edges
[NEDGES]

<new>
e / edges
[NEDGES]

B builder

NEDGES  -> 
[10], [10]

Runs over N 
iterations, if final 
iteration, output is 
here

Output data 
are the 
ribbons
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Step 2b: Iterations (node)

node
network

[10+10+10] -> [8]

Iterates over each node, 
gets weighted sum of 
inbound and outbound 
nodes

H / hidden
[NHITS,10]

<new>
e / edges
[NEDGES]

M builder

NHITS      -> 
[10], [10]

ei

<new>
H / hidden
[NHITS,10]

*Aggregation

Su
m in

bound

Su
m outbound

Base node



12/03/24 Sergey Furletov                             Streaming Readout Workshop SRO-XII,  University of Tokyo 46

Step 3: Final edge output

edge
network

[10+10] -> [1]

Iterates over each 
edge, gets parameters 
of src and dst hits to 
pass into network

ei / e_index
[NEDGES,2]

H / hidden
[NHITS,10]

e / edges
[NEDGES]

<new>
e / edges
[NEDGES]

B builder

NEDGES  -> 
[10], [10]

Runs over N 
iterations, if final 
iteration, output is 
here

Output data are 
the ribbons
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Simple Overview

Input 
Network Edge update Node update / 

aggregation Edge output
<new>

e / edges
[NEDGES]

Iterations

Step 1 Step 2a Step 2b Step 3
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Event display, single track
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Tracking performance 
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 Display Event: 106   Run: 3202
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 Clusters for FPGA 
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 ML-FPGA response
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 Clusters for FPGA 
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 ML-FPGA response

z (drift time, 8ns FADC)
y (r/o strip, 0.4mm) q Top rows: show ionization along the 

track in GEMTRD detector.
Ø Red circles are reconstructed 

clusters using some dE/dx 
threshold. The size is 
proportional to energy.

q Middle rows: after filtering out the 
noisy clusters, the coordinates of the 
clusters are sent to the FPGA/GNN 
for pattern recognition.

q Bottom rows: GNN provides labeling 
of clusters (by color in the figure), the 
same colors belong to the same 
track.

q Then clusters of the same color (tag) 
are sent to the track fitting module: 
LSTM.

q The results of track fitting are 
represented by lines in the figures.

q The next step is to count all the 
ionization in the corridor around the 
track and send it to the PID module 
(DNN).

q As a bonus, GEMTRD provides a track 
segment for the global tracking 
system.
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