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Outline Jefferéon Lab

as Jefferson National Accelerator Facility

O Report on ML-FPGA developments for 2 nuclear physics experiments.

> EIC - new Electron-lon Collider under construction at BNL.

> GlueX - experiment located at the Thomas Jefferson National Accelerator Facility (JLab)
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Electron lon Collider (EIC) Jefferdon Lab

L The Electron-lon Collider, a new facility for nuclear =
physics research to be located at Brookhaven Lab, S,
will allow scientists from across the nation and
around the globe to peer inside protons and
atomic nuclei to reveal secrets of the strongest
force in nature.

d Research at the EIC will take our understanding of
matter to the next level—beyond the interactions
of atomic nuclei with their orbiting electrons,
which power the electronic and information
technologies we now use every day, to the forces
acting inside the nucleus.

11177

EPIC Tracker

The Electron-lon Collider

A machine for delving deeper than ever before
into the building blocks of matter
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EIC streaming readout as motivation for ML-FPGA  jefferdon Lab

omas Jefferson National Accelerator Facility
— Configuration & Control
I
Power

4 The correct location for the ML on the FPGA

Detector FEB FEP | DAQ . . ) .
(Front End Board) | (Front End Processor) | (Data Acquisition) filter is called "FEP" in this figure.
| ' +  Thisgi ic earli
s gives us a chance to reduce traffic earlier.
[ BW: O(100 Tbps) > [ BW: O(10 Tbps) > g ff

L~100m Beam collision clock input intelligence to L1.
fiber .
A Goal: O(100 Gbps) 4 However, it is now unclear how far we can go
Fiber T with physics at the FPGA.

' “ + Initially, we can start in pass-through mode.
Switch /

Server/ Switch/ Sv(vail:csgr( . .
FPGA i ERL“dkgt e | e 4 Then we can add background rejection.
“W 4 Later we can add filtering processes with the
: : ' largest cross section.
‘ S \ Analog ~ 20m

— — — e — — — —

LVDS ~ 5m

Power Supply System 4 In case of problems with output traffic, we can
(HV, LV, Bias) add a selector for low cross section processes.
Cooling Systems 4 The ML-on-FPGA solution complements the

purely computer-based solution and mitigates
DAQ performance risks.
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Generic EIC R&D project RD15, ML-(on)-FPGA Jefferdon

omas Jefferson National Accelerator Facility

O The goal is to build a demonstrator that can operate under beam test conditions in real-time.
O The setup consists of several PID and tracking detectors: emCAL, GEMTRD, GEM tracker.
O Preprocessed data from detectors including decision on the particle type will be transferred to another ML-FPGA board with neural

network for global PID decision.

O The global filter transfers data to off-line computer farm, running JANAZ2 software.

Team :
F. Barbosa, L. Belfore, N. Branson, N. Brei, C. Dickover, C. Fanelli,
D. Furletoy, L. Jokhovets, D. Lawrence, C. Mei, D. Romanov, K. Shivu

Detectors

"

Tracking

Low latency filter Computer farm

ML-FPGA
PID

GEMTRD JANA2
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FPGA test board for ML

Jef on Lab
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At an early stage in this project, as hardware to test ML

algorithms on FPGA , we use a standard Xilinx evaluation boards
rather than developing a customized FPGA board. These boards

have functions and interfaces sufficient for proof of principle of
ML-FPGA.

The Xilinx evaluation board includes the Xilinx XCVU9P and
6,840 DSP slices. Each includes a hardwired optimized multiply
unit and collectively offers a peak theoretical performance in
excess of 1 Tera multiplications per second.

Second, the internal organization can be optimized to the
specific computational problem. The internal data processing
architecture can support deep computational pipelines offering
high throughputs.

Third, the FPGA supports high speed I/0 interfaces including
Ethernet and 180 high speed transceivers that can operate in
excess of 30 Gbps.

FMC+
(24 x GTY)

User Clock Input SMAs

SYSMON Header

USB-JTAG Connector
JTAG Header
USB-UART Connector

Samtec FireFly Interface
(4x GTYs)

QSFP28
(4 x GTYs)

QSFP28
(4xGTYs)

Featuring the Virtex® UltraScale+™ XCVU9P-L2FLGA2104E FPGA

Ethernet Port
(10/100/1000 Mb/s Tri-Speed Ethernet)

_ XCVU9P-LGA2104E
RLDRAM3 72-bit
(2 x 36 Components) FMC

oile
vcu118-board-image

QSPI Flash
Memory
DDR4 80-bit PCle Edge Connector
(5 x16 Components) Gen3 x16, Gend x 8
Bottom Side of Board (16 x GTYs)

DDR4 80-bit
(5 x 16 Components)

Xilinx Virtex® UltraScale+™

Pmod Headers

PMBus Header

User Push Button
Switches
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GEM-TRD prototype for EIC R&D Jefferdo
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* To demonstrate the operating principle of the ML FPGA, we use the existing setup

l * from the EIC detector R&D project

* A test module was built at the University of Virginia

* The prototype of GEMTRD/T module has a size of 10 cm x 10 cm with a
corresponding to a total of 512 channels for X/Y coordinates.

* The readout is based on flash ADC system developed at JLAB (fADC125) @125 MHz
sampling.

* GEM-TRD provides e/hadron separation and tracking

‘ pion / / electron
: Entrance
Radiator / window
3 2000
I e i
0 -
© -
g 15m_ ] ......
Primary g _———————-W." 3| Drift cathode § i drift time H
dE/dx | TR / = 1_
clusters/ " photon® gas o 8 000
mixture S i
500 -
A 3 I
(— B B Amplification i ——— . e
Readout region M e 3 GEMs 40 60 80 100 120 140 160 180 200
fadc time, 8ns
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GEM-TRD principle

Je on Lab

omas Jefferson National Accelerator Facility

>

YV VvV

L The e/pion separation in the GEM-TRD
detector is based on counting the ionization
along the particle track.

O For electrons, the ionization is higher due to
the absorption of transition radiation photons

O So, particle identification with TRD consists of
several steps:

The first step is to cluster the incoming
signals and create "hits".

The next is "pattern recognition" -
sorting hits by track.

Finding a track

lonization measurement along a track
As a bonus, TRD will provide a track

segment for the global tracking system.

GEM-TRD can work as micro TPC, providing 3D track segments

Ess:
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GEMTRD tracks Jefferéon Lab
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Q /n a real experiment, GEMTRD will have multiple tracks.

L So we also need a fast algorithm for pattern recognition

O As well as for track fitting.

L The decision was made to try the Graph Neural Network (GNN) for pattern recognition.
Q And a recurrent neural network — LSTM, for track fitting.

. % ° Javier Duarte
=T ' . X1v:2012.01249v2 [hep-ph]| 7 Dec 2020
%_} I arXiv v2 [hep-ph] 7 Dec

o &,
ﬂj \,  HEP advanced tracking algorithms
o at the exascale (Project Exa.TrkX)
L https://exatrkx.github.io/

(vj, ek) (eli,
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GEMTRD tracks Jefferéon Lab
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Q /n a real experiment, GEMTRD will have multiple tracks.

L So we also need a fast algorithm for pattern recognition

O As well as for track fitting.

L The decision was made to try the Graph Neural Network (GNN) for pattern recognition.
Q And a recurrent neural network — LSTM, for track fitting.

O PID is based on measuring ionization along the track.

. %‘ ° Javier Duarte

. S8 K. arXiv:2012.01249v2 [hep-ph] 7 Dec 2020
@) St
ﬂ%f K:
0".

 HEP advanced tracking algorithms
at the exascale (Project Exa.TrkX)
O https://exatrkx.github.io/

(v,', ek) (e/i,

12/03/24 Sergey Furletov ~ Streaming Readout Workshop SRO-X1I, University of Tokyo 10



https://exatrkx.github.io/

Je on Lab

omas Jefferson National Accelerator Facility

GNN for pattern recognition

Q Graph Neural Networks (GNNs) designed for the tasks of hit classification and segment classification.
» These models read a graph of connected hits and compute features on the nodes and edges. |

W The input and output of GNN is a graph with a number of features for nodes and edges. |
> In our case we use the edge classification

O A complete graph on N vertices contains N(N - 1)/2 edges.
» This will require a lot of resources which are limited in FPGA.

L To keep resources under control, we can construct the graph for a specific geometry and limit the minimum particle momentum.
O /n our case we have a straight track segments, with a quite narrow angular distribution ~15 degree.

O Thus, for the input hits (left), we connect only those edges that satisfy our geometry and the momentum of most tracks (middle)
U The trained GNN processes the input graph and sets the probability for each edge as output.

L The right plot shows edges with a probability greater than 0.7

25 - B 25 - 2% 1
L d
20 1 20 - 20
15 [] 15 - 15
*
10 - L 10 A 10 I
5 1 B 51 5 #
*
4
O T T T T T D T T T T T T T D T T T T T T T
-10 -8 -6 —4 -2 a -10 -8 -6 -4 -2 0 2 4 -10 -8 —6 -4 -2 0 2 4
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GNN performance Ja

omas Jefferson National Accelerator Facility

O This type of graph neural network is not yet 104 1 1 fake |1.07 ~—
supported in HLS4ML. ] ] true W
d So we did a manual conversion first to C++ and then 103 081
to Verilog using Vitis_HLS. ]
H O This neural network has not been optimized/pruned, ) 0:6
so it consumes a lot of resources - 70% of DSPs, 10
(4651 of 6840). 0.4
> Network use precision ap fixed < 16,9 > Lot
> At the moment it can serve up to 21 hits and 42 0.21
edges, or, in our case (GEM-TRD), it will be 3-5 j — punty
tracks. 10°; | ]|—| nll“tnf] |.|L . ﬂﬁ 001 e‘ff'c'encf’ | | |
O However, it performs all calculations in ~3 us (left 0 02 04 06 08 10 00 02 04 06 08 10
Model output Cut on model score

plot) (thanks to Ben Raydo), providing good purity
and efficiency (right plot).

Modules & Loops Issue Type Latency((ycles) Latency(ns) Ilteration Latency Trip Count | Pipelined | BRAM - URAM

v O gnn2dfs2 2.945E3 42 4424 3036 2519454
w @ toGraph - 495E3 - - dataflow

@® fromGraph - 1.655E3 - - yes 0 0 197686 1673583
» ® gnn2dfs loc_1 - 2.480E3 - - no 42 4422 172620 785082

» ® toGraph_Block_split100_proc205 - 2.400E3 - - no 0 2 7226 49627
VITIS_LOOP_1365_1 - 315.000 - no
VITIS_LOOP_1400_3 - 110.000

12/03/24
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RNN/LSTM for track fit Jeffergo
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% of zeros = 0.75

O The hits sorted by tracks from the pattern recognition GNN are fed into another neural network
trained to fit the tracks.

O We use RNN/LSTM neural networks. ( thanks to Dylan Rankin for help ) o
» Network use precision ap fixed < 24,11 >
> The input layer is designed for 26 hits.
» The work on optimization of NN is ongoing.

. 101
O The LSTM network after pruning consumes 19% of the DSP resources and has a latency of 1 us.
+ Latency (clock cycles):
* Summary:
s e R +o---- R +
Interval | Pipeline |
min | max | Type | 10° 4
R R EEE +o---- Femmme e +
208| 208| function | -03 -0.2 -0.1 0.0 01 02 03
s R +----- B +
0.12 4 == Utilization Estimates == Utilization Estimates
* summary: * summary:
L R L R R e e +o---- + Fec-emcrccececeeeeae
0.10 - | Name | BRAM 18K| DSP48E| FF | LUT | URAM| | Name
o e D Femmmmmm R - O e
|DSP | - -1 | - | |DSP
|Expression | - | 0| 6| | |Expression
0.08 1 |FIFO | - - - -l -] |FIFO
| Instance | 64|  4271| 23258| 163672| -] |Instance
[ Memory | - - - -] -] |Memory
|[Multiplexer | - - - 955 | -] [Multiplexer
0.06 1 |Register | -1 - 2323 -1 -| |Register
R R L L +o-------- e R T +o---- R e L L
|Total | 64|  4271| 25581|  164633| 0| |Total
0.04 4 R L R Fo-mmm- R e +o---- I S
’ |Available SLR | 1440 | 2280 | 788160 | 394080| 320| |Available SLR
o e D Femmmmmm R - O e
|utilization SLR (%) | 3] 41| 0| |utilization SLR (%)
0.02 4 o s +--\------ R o I R R R LR
|Available | 2864480| 1182240| 960| |Available
T T T T T Lo LR LAl AL R el hrmeneea +e-em--- +---p---- e +----- 4 F-=sscssscsssesscsse==
0 20 40 60 80 |utilization (%) | ‘ 1| 13| 0| |utilization (%)
L R e L L LY R D +-feem e +o---- + Foccceccceccccee e

12/03/24 Sergey Furletov Streaming Readout Workshop SRO—z_YHi gégiversig 0‘ To@o S -




MLP neural network for PID

Je on Lab
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QO After the track is fit, the ionization along the track can

@par9
be counted. @par8 == Performance Estimates
. e . . @par7 - .
O The distance along the track is divided into 10-20 bins, g . g e
and the ionization energy in these bins is fed to the input epars = = S = 4
| Clock | Target| Estimated| Uncertainty|
of the MLP neural network. @par4 N ! ! ! !
. . @pars ol lap_clk ( 5.@ 3.968| 0.62]
 Typically neural network weights often have many zeros, ... ; ; . ; =
thus, it is possible to reduce the size of the network by apar1 & + Latency (clock cycles):
removing weights close to zero (~50%) @par0 * Summary: | |
1 | Latency | Interval | Pipeline | —
u ;gg’/ n;;gwork performance near the working value of U min | mex | min | mex | e || Latency =65ns
o ejjiciency. + D 3 : +
hisaml i
100 l 1@ 1@ ( 1!)nct10n l Il = 5ns
2501 | — etagger, AUC = 96.1% |
p tagger, AUC = 96.1% H
| ==- etagger, AUC = 95.7% { == Utilization Estimates
200 - p tagger, AUC = 95.7% §
/ * Summary:
> + + t + t
g 1071 | Name | BRAM_18K| DSP48E|  FF | LUT | URAM|
150 - AT + : - + + + +
z i |DSP | - -| - -l -
g g |Expression | - - 0] 6] -
H 5 |FIFO | | | | - -
100 - = |Instance | 16| 233 1241  11742|  -|
ERTER [Memory | ol ol - -l -
0 |[Multiplexer | -1 - =| 36| -
|Register | = - 1235| - -
50 + + + + + + +
|Total | 16|  233| 2476  11784| 0|
iUtilization (%) | ~0 |( 3] ~0 | ~0 | @i
ol cemBlbhdeadl b L, | 10-3 L : | | | | t t t ' t ' t
-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 0.0 0.2 0.4 0.6 0.8 1.0 ope .
weights Signal Efficiency ‘ DSP utilization 3% \
12/03/24 Sergey Furletov Streaming Readout Workshop SRO-XII, University of Tokyo 14




Board design

Je on Lab
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Q All data I/O operations are performed by Control IP
O MicroBlaze is only used to configure the board and monitor data processing.
O Aurora interface provides communication with a second FPGA board that processes the calorimeter data (CNN).

L 10 Gigabit Ethernet uses TCP/IP, receives data from detectors (DAQ) and sends pre-processed data to the computer (farm).

Neural network IPs for data processing

Aurora interface

aurora_64b66b_0

= 4 USER_DATA_S_AXIS_TX
||[+&T_oiFF_REFcLKt

||+ core_conTroL
||[+@eT_seriaL_rx

USER_DATA_M_AXIS_RX+ 3

CORE_STATUS +
GT_SERIAL_TX

QPLL_CONTROL_OUT

Aurora 64B66B

10 Gb TCP/IP

/~

GNN: Pattern: 3us

= 4ins V.V L N out_s_V_V+ =
E ) J

Gamird3f (Pra.Praducti 1r|)

LSTM: Track fit: 1us

xxv_ethernet_0

" + gt _ref_ck
" =+ mii_tx_0
||[+ct 0

gt_serial_port <= ||
mii_n_0== "
stat_tx_0== "
stat_x_04- "

fifo_generator_0

10G/25G Ethernet Subsystem

;{Hx 111

.

out_s_V - ==

: +in_s_V d

Gnn2dfs2 (Pre-Production)

DNN: PID: 65ns

= 4ins vV out_s_V_V 4 3
\ Lr ]

Lstm3 (Pre-Production)

Control IP

microblaze_0

axis_ _converter_0

M_AXIS 4 =
J—

FIFO Generator

1

AXlI4-Stream Data Width Converter

M_AXIS 4 H

e

inmerrupt+]"_

AXI Interrupt Controller

owve+ ||}
= ILMB
10 20”5 |||+ nTERRUPT + "
= O M_AXI_DP - | s

CIr_s64s_0 +81—AXIS Mo_AXIS + ﬁ
E[+ ut_s0_V : +82_AXIS M I Bl 7 wi_acs+
1 +out_s0_ — . =
a 2 M2_AXIS 4+
€+om_sl_\l in_s0_V - = 4 -S3_AXIS IC rO e " - SI =
13_AXI =
= +-out s2 V Vitis™ HLS in_s1_V - = = +84_AXIS M ’ S+FE
4_AXIS 4 =
=l in_s3_V d in_s2_ V4 = ||| +DEBUG A; nod- =
M_AXI i
= =out_s3_V in_s4_V+é “; AXI o+
= out_s4_v in_s5_V 4 = S

= Fout_s5.V J— MicroBlaze

Ctrl_s64s (Pre-Production)
axis_dwidth_converter_1 ™
microblaze_0_axi_intc _l L_
= 45 AxIS M_AXIS + =

7 i

AXlI4-Stream Data Width Converter
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Latency and rates (very preliminary) Jefferdon Lab
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L Control IP manages data traffic between NN-IP and the Ethernet interface.
L The IP block was synthesized directly using Vitis_HLS, the total latency is about ~20 us (~50 kHz).

W Control IP block primarily performs serial /0
» Therefore, it consists of long loops designed to accommodate the maximum data size.

Q /n reality, the average data size is much smaller, so the actual speed should be higher.
W This was confirmed in measurements - peak performance reached 80 kHz.
O This is the first version, not yet optimized and Il violations have not been fixed.

Modules & Loops Issue Type Slack Latency(cycles) Latency(ns) Iteration Latency Interval Trip Count Pipelined BRAM DSP FF LUT URAM

v O ctrl_s64s @ Il Violation = 2.089E4 = = 8 5 4184 22984 0
VITIS_LOOP 399 2 - 20.000
VITIS_LOOP_443_3 T126
VITIS_LOOP_464 4 = ShllzElEs
VITIS_LOOP_475_5 @ ! Violation = 225.000
VITIS_LOOP_479_7 @ !l violation - 215.000

VITIS_LOOP_484_9 VITIS_LOOP_484 10 . 225.000

VITIS_LOOP_503_11 - 35.000
VITIS_LOOP_508_12 - 105.000
VITIS_LOOP_523_13 - 135.000
VITIS_LOOP_540_14 - 105.000
VITIS_LOOP_542_15 - 110.000
VITIS_LOOP_562_16 @ ! Violation = 4.020E3
VITIS_LOOP_626_20 - 220.000
VITIS_LOOP_642_21 - 5.125E3

W = W v A0 W= -

H
w w wm

12/03/24

Sergey Furletov Streaming Readout Workshop SRO-XII, University of TOQO 16
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FPGA board resources for GEMTRD

Jef on Lab

omas Jefferson National Accelerator Facility

Utilization

LUT
LUTRAM
FF 1
BRAM
URAM 1
DSP 1
10
GT1
BUFG 1
MMCM
PLLT

O Neural networks use a lot of FPGA resources.

O Therefore, one VCU118 board can only process
data from GEMTRD.

37%

16%

5%

Post-Synthesis | Post-Implementation

Graph | Table

83%

25

50

Utilization (%)

75

100
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Jef on Lab
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Detectors

Electronics rack

12/03/24
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Beam structure and rate

Je

omas Jefferson National Accelerator Facility

on Lab

upgate: 4 seconds ago,

%SYM
97 a

Experiment
H2/H4
94 a H6/H8
98 a AMBER
85 NAG2
Phone: 77500 or 70475
Comments (30-Aug-2024 07:19:05)

NOW:NA
NEXT:LHC FILLING ~08:00

Injected Flat Top

O Spill Duration: 4.8 s.

O Repetition rate: 10 - 40 s.

O Energy: 20 GeV

O Trigger rate during spill: 300-400 Hz

Control Configurations Options Expert User Help
— 44 n
) - N | N

Run Parameters

Expid Session Configuration
hdtrdops hdtrdops hd_trd.ti
Output File

/home/hdtrdops/DAQ/trd_muon/DATA/hd_rawdata_005233_000. evio

User RTY %{config)
‘home/hdtrdops/DAQ/trd_muon/dagiconfigihd_trd/gemtrd_ti_fp.conf

Start Time
07/20/24 15:05:36

Run Status
Run Number
5233

Watch Component
PEBTRD

Total Events

End Time
0

Run State
active

Event Limit

Data Limit

User RTY %(dir)
unset

Name
PEBTRD
ROCTRD1

Name

SIS _TTU_CTUL LT
sms_hd_trd.ti
sms_hd_trd.ti
sms_hd_trd.ti
_hd_trd.ti
_hd_trd.ti
_hd_trd.ti
_hd_trd.ti

S

s k:hd:trd.ti
sms_hd_trd.ti
sms hd trd.ti

Time Limit {min.}

42,481
State EviRate DataRate IntEviRate | IntDataRate Event Rate Data Rate
0.0 0.0 1011 8.4
1.0 37.8 101.9 3.9
100
350
300
250
2 200
150
100
0
0
Message
STATLINTY PTULESS = 11U_dILISY_FrE

Script (thome/hdtrdops/DAQ/trd_muon/dag/scripts/run_prestart 5233 cMsg://mpgdtrd.cern.ch: 4500
Done process = hd_all.tsg_PRE

Prestart succeeded.

Go is started.
Starting proce

hd_all.tsg_GO_SYNC

Script (/horme/hdtrdops/DAQ/trd_muon/dag/scripts/run_go_sync 5233 cMsg://mpgdtrd.cern.ch:4500...

Waiting sync-script to complete...

Done process = hd_all.tsg GO_SYNC

Ernu PEBTRD go: waiting for PRESTART event in rodule EbModule {client msg)
Starting process = hd_all.tsg_GO

Script (/home/hdtrdops/DAQ/trd_muon/dag/scripts/run_go 5233 cMsgu/mpgdtrd.cern.ch:45000/cMs...

Done process = hd_all.tsg_GO
Starting process = hd_all.tsg_RCDB
Done process = hd_all.tsg RCDB

Periodic script (thome/hdtrdops/DAQ/trd_muon/dag/scripts/run_update_redb %(rn) cMsg://mpgdtrd....

Go succeeded.

Client Data | Live Time

Event Rate

ROCTRD1 © PEBTRD

Time
IoUTZS UIf2u
Lo |15:05:27 07720

15:05:32 07/20
15:05:32 07/20

LDRs | InB | OutB

Severity

INFO

12/03/24 Sergey Furletov
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Tracking performance Jefferdo
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Display Event: 77 Run: 3202 Display Event: 224 Run: 3202 [D TOp rows: ShOW Ionlzatlon along the

¢ o [V (r/o strip, 0.4mm) 0 g wE- . - o — | 1+ track in GEMTRD detector.

o z (drift time, 8ns FADC) ) B ~ - > Red circles are reconstructed

e = - | = 0E- — — clusters using some dE/dx

E = = — ° °E — —_— e ——e=— " threshold. The size is

wE- . wE- o ~ ! proportional to energy.

e f e ‘Q Middle rows: after filtering out the
= 1 . a ., wE ey T PP T M noisy clusters, the coordinates of the
Z pos,mm Z pos,mm

,, clusters are sent to the FPGA/GNN
Clusters for FPGA Clusters for FPGA for pattern recognition_

e “E e “E o o o o . .

g e g eE ° ° Q Bottom rows: GNN provides labeling
“E WE o ° ° ° of clusters (by color in the figure), the
oE- o 3 o o o oE- o o o o same colors belong to the same
°E ° o © o ° s o °E ° ° o ° track.

- = o o o o
e wE- o o o o Q Then clusters of the same color (tag)
= o o o o b .
JE E are sent to the track fitting module:
500g 3 5 s % P 30 ’5005 B T [ E— 2. " ozls —2 30 LSTM.

z pos,mm 2z pos,mm

O The results of track fitting are

. ML-FPGA response . MLFPGA response represented by lines in the figures.

:UE iU [ The next step is to count all the
wE- wf- . . e o ionization in the corridor around the
0 _ e Y _ o o o 0= ° e e o track and send it to the PID module
== L e e o e ==

= r . C—— = o o o o (DNN).
105— —105— o e __ e 0O .
e S— . o o 3 o o o Q As a bonus, GEMTRD prowde_s a track
wE o . . . segment for the global tracking
7500: * 5I * * * * 1I0 * * * * 1I5 * * * * 2‘0 * * * * 2‘5 * * * 30 7500: * é * * * * 1I0 * * * * 1I5 * * * * 2‘0 * * * * 2‘5 * * * * 30 S ys tem .

z pos,mm z pos,mm
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Calorimeter parameters reconstruction

Je on Lab

mas Jefferson National Accelerator Facility

' By Dmitry Romanov

Modules deposits -

Decoder

B'

5 4 5 \al‘z P Convolutional variational autoencoder

% 4 -2 0 2 H 6
Per cluster values: energy,
pid, x, y, features

Clusters

e Convolutional VAE as a backbone
 Modules deposits as inputs

* Per cluster output of multiple values:
* Energy, e/ m, coordinates, features

Geant 4 simulation

Examples of events with e and it~
showers and p~ passing through.

f1r0- o - D
..... A0OULl VWOI'KSIopD R()

12/03/24

Sergey Furleto




CNN for calorimeter reconstruction Jefferdo

omas Jefferson National Accelerator Facility

4+ In this work we used a convolutional encoder with a decoder consisting of ' ¥ ¥ ¥ ¥
. . . | Clock | Target| Estimated| Uncertainty|
dense layers, which provide e-rt separation scores as the output. H + + + + ‘
4+ Synthesized with HLS4ML, for calorimeter 11x11 cells. el W N °-82|
4 This was done to minimize a network size in FPGA and due to current S S
limitation of HSLAML of supported network layer types. « Summary: L
4 FPGA synthesis with reuse factor of 1 has a latency of 0.7us and an interval | m Interval | Pipeline |
of 125 clocks. It uses 74% of DPS resources | fuin | max fymin | max | Tyee |
4 Network use precision ap fixed < 20,10 > !\139! 139/ 125| 125| dataflow |
AN S et S .
Predicted results
Actual values T T T T T T T
€ ™ | Name | BRAM_18K| DSP48E| FF | LUT | URAM|
e 988 % | 1.2 % . | 5 5 = S5
T 290 9% 97.1 % |Expression | - - 0| 2| -
|FIFO | 404 | = 8999 | 15698 | |
6 6 |Instance [ 61| 5124 | 55854 | 243846 | -
__ |[Memory | - | - - -
o 2l |[Multiplexer | — | = - o =|
|Register | -] - - -1 -
! I ‘] |Total | 465| 5124 64853 259546| 0|
° ° iAvailable SLR | 144oi zzaoi 788160i 394080i 320i
N — VR ] |Utilization SLR (%) | 32| 224] 8| 65| 0|
N convolutional dense |Available | 4320 /GB'W‘i\Z364480 | 1182240| 960
- Lo encoder decoder - e iUtilization (%) | 1oi ( 74i ) zi 21i ei
Input data output : : A ‘ T

12/03/24
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Calorimeter CNN optimization with HLS4ML Jeffer<o

omas Jefferson National Accelerator Facility

hls config['Model'] ['Precision'] = 'ap fixed<20,10>"'

B3 prune_low_magnitude_conv_0
Bl prune_low_magnitude_conv_1
Bl prune_low_magnitude_conv_2
@l prune_low_magnitude_conv_3
6000 { EEE prune_low_magnitude_dense_0
8 prune_low_magnitude_dense_1
B prune_low_magnitude_output_dense

Layer prune_low_magnitude_conv_0: % of zeros
Layer prune_low_magnitude_conv_1: % of zeros
Layer prune_low_magnitude_conv_2: % of zeros
Layer prune_low_magnitude_conv_3: % of zeros .
Layer prune_low_magnitude_dense_0: % of zeros = 0.5
Layer prune_low_magnitude_dense_1: % of zeros = 0.5

0
0.
0
0

oo n

Layer prune_low_magnitude_output_dense: % of zeros = 0.5 £ 4000

Layer prune_low_magnitude_fused_convbn_0: % of zeros = 0.0 §

Layer prune_low_magnitude_fused_convbn_1: % of zeros = 0.0 5

Layer prune_low_magnitude_fused_convbn_2: % of zeros = 0.0 2 %000

Layer prune_low_magnitude_fused_convbn_3: % of zeros = 0.0 (eras. baseline
Layer prune_low_magnitude_dense_0@: % of zeros = 0.0

Layer prune_low_magnitude_dense_1: % of zeros = 0.0 ]

Layer output_dense: % of zeros = 0.0

1000 A

-1.5 -1.0 -0.5 0.0 0.5 1.0 15
Weights

12/03/24 Sergey Furletov Streaming Readout Workshop SRO—é Z%{.ﬁiversiﬁ 0; To@o —— — 24
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JANA2 for ML on FPGA

Pre-processed data from the FPGA is transferred over the
network (TCP/IP) to a computer running JANA2 software.

25



JANAAMLAFPGA Jeffersonlab
JANAZ2

(JLab ANAlysis framework)

DEtECtOr - JANAZ2 is a multi-threaded modular event reconstruction
framework being developed at Jlab for online and offline

processing

- JANA?2 is a rewrite based on modern coding and CS practices.
Developed for modern NP experiments with streaming
readout, heterogeneous computing and Al

- JANAZ2 is the main framework chosen for EIC. Used for ePIC
collaboration reconstruction and further Detector 2. Used in

multiple Jlab experiments and prototypes

FACTORY

(algorithm)

Validation software

12/03/24

Sergey Furletov Streaming Readout Workshop SRO-XII, University of Tokyo 26




JANAAMLAFPGA JefferSon L

I omas Jefferson National Accelerator Facility

Goals:

- Read and write EVIO
- Write flat ROOT files
Detector

- Receive EVIO by TCP (and save)

- Receive network streams

>
=
prg
<
—
m
U
Q)
prd

- Receive FPGA data

- Simulate sending detector data
- Data Quality Monitor

- Al streaming preprocessing

- Conventional preprocessing

D, = 1/ [ I ~Q 7
O Neadoul VWWOrkKsSnop RO-) /] & ) OKYVO

12/03/24 -
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GlueX experiment Jeffer<o

omas Jefferson National Accelerator Facility

U GlueXis a particle physics experiment

located at the Thomas Jefferson forward calorimeter
National Accelerator Facility (JLab) I_ U E Iba.rrel ti;'lt!e;‘of DIRC
accelerator in Newport News, Virginia. A start caorimeter -flight

counter

Q /ts primary purpose is to better
understand the nature of confinement target
in quantum chromodynamics (QCD) by
identifying a spectrum of hybrid and
exotic mesons generated by the
excitation of the gluonic field binding photon beam
the quarks.

L Hall D is dedicated to the operation diamond ’ forward drift
with a linearly-polarized photon beam wafer / chambers
produced by ~12 GeV electrons from / ﬁ ‘ec:::" :e’:“

CEBAF at Jefferson Lab. electron .

Q Typical L1 trigger rate 40-70 kHz electron tagger magnet beam | s“pe::;:;“'“g

Q Data rate 0.7 — 1.2 GB/s beam tagger .to detector distance

is not to scale

O L1 Trigger latency 3.5 us.

12/03/24 Sergey Furletov Streaming Readout Workshop SRO- iversity of Tokyo — 29




Tracking for GlueX experiment Jeffergon Lab |

omas Jefferson National Accelerator Facility

U The first target for implementing neural
network-based tracking is the Forward Drift
Chamber (FDC).

U The GlueX experiment has relatively low
occupancy:
O Number of hits/event:
> (Q25, Q75, Max) = (50, 70, 558)
L Number of tracks/event
> (Q25, Q75, Max) = (4, 6, 11)
QO This, in principle, makes it possible to fit a
neural network in existing FPGAs.
O The FDC consists of 4 modules, each
consisting of 6 planes, providing up to 24
points per track.

O The FDC is placed in a magnetic field, so the F DC
particles move in a helical trajectory.

Team:
Ahmed Mohammed, Kishansingh Rajput, Simon Taylor,
Sergey Furletov, Denis Furletov, Malachi Schram

12/03/24 Sergey Furletov Streaming Readout Workshop SRO- iversity of Tokyo N — 30




Tracking for GlueX experiment Jefferdon Lab

omas Jefferson National Accelerator Facility

U The first target for implementing neural
network-based tracking is the Forward Drift
Chamber (FDC).

U The GlueX experiment has relatively low
occupancy:

O Number of hits/event:

> (Q25, Q75, Max) = (50, 70, 558)

L Number of tracks/event

> (Q25, Q75, Max) = (4, 6, 11)

QO This, in principle, makes it possible to fit a
neural network in existing FPGAs.

O The FDC consists of 4 modules, each
consisting of 6 planes, providing up to 24
points per track.

> 6 tracks x 24 hits/trk = 144 hits -
|__gae0009

O The FDC is placed in a magnetic field, so the F DC |:> L
particles move in a helical trajectory. LT

Team: ]
Ahmed Mohammed, Kishansingh Rajput, Simon Taylor, L
Sergey Furletov, Denis Furletov, Malachi Schram

12/03/24 Sergey Furletov Streaming Readout Workshop SRO- iversity of Tokyo — 31




Event Display

Je / on Lab

omas Jefferson National Accelerator Facility

L The FDC geometry with 6 closely spaced planes
and large distances between modules makes it
difficult to directly use GNN for pattern
recognition in a magnetic field, see event display

l on the right.

L Moreover, a large graph uses too many FPGA
resources — need to process > 150 hits.

L Better results are achieved by using a two-stage

reconstruction:
» in first GNN, the track segments in each

module are reconstructed and fitted with a
straight line,

» and then the resulting vectors are fed into a
second GNN to reconstruct the full track.

top view (looking down from e detector) "

gililie

top view (looking down from above detector)

LZ F———30cm

- B AN Lialu Frdml ddudvelivd ads Inalihalivheatvabnd

=

'BCAL view from downstream looking upstrez

12/03/24 Sergey Furletov
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Event Display

Je on Lab

omas Jefferson National Accelerator Facility

L The FDC geometry with 6 closely spaced planes
and large distances between modules makes it
difficult to directly use GNN for pattern
recognition in a magnetic field, see event display
on the right.

L Moreover, a large graph uses too many FPGA
resources — need to process > 150 hits.

L Better results are achieved by using a two-stage
reconstruction:

» in first GNN, the track segments in each
module are reconstructed and fitted with a
straight line,

» and then the resulting vectors are fed into a
second GNN to reconstruct the full track.

top view (looking down from ‘e detector) e

L

top view (looking down from above detector)

LZ F———30cm

- B AN Lialu Frdml ddudvelivd ads Inalihalivheatvabnd

=

'BCAL view from downstream looking upstrez

12/03/24 Sergey Furletov

Streaming Readout Workshop SRO-XII, University of Tokyo
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Processing with FPGA

Jef on Lab

omas Jefferson National Accelerator Facility

O The FDC geometry with 6 closely spaced planes
and large distances between modules makes it
difficult to directly use GNN for pattern
recognition in a magnetic field, see event display
on the right.

O Better results are achieved by using a two-stage
reconstruction:

» in first GNN, the track segments in each GNN FPGA
module are reconstructed and fitted with a
straight line,

» and then the resulting vectors are fed into a
second GNN to reconstruct the full track.

Q /n this way, FDC modules are processed in
parallel and the FPGA resource usage is
significantly reduced.

gl

GNN FPGA

GNN FPGA

12/03/24 Sergey Furletov Streaming Readout Workshop SRO- iversity of Tokyo
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Reconstruction of track segments in FDC Jeffergo
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Reconstructed track segments.

Currently we work in 2D, with only one projection: x-z.

Original hits projections in FDC: x-z and x-y

XZ projection XY projection
e 50 o 5OF 710 o 5O —10
E aof g F S E
Y o o 40 —19 o 40 —19
o o x - > -
> C C
30F —18 30F —I8
C . [ C ]
20F —7 20F d —7
10E et 6 10E . 6
é o @ (] E
o 5 OF 5
C Sy C
-10F 4 ~-10F a - 4
C ~— - 4
- * - - 1
—20F 3 —20F F I 3
: : =
-30 2 -30 2
-40F 1 —40F 1
_50 : L l L1 l L1 l Ll l Ll l L1 l L1 l Ll l Ll l L1 _50 : 0 _50 F 0
180 200 220 240 260 280 300 320 340 360 180 200 220 240 260 280 300 320 340 360 =50 -40 -30 -20 -10 O 10 20 30 40 50
Z pos,mm z-coord x-coord
12/03/24 Sergey Furletov Streaming Readout Workshop SRO-XII, University of Tokyo 35




GNN tracking performance
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L The bottom left figure shows the efficiency of segment

recons truction Event: 32 XZ projection XY projection
 The bottom right figure shows the efficiency of full R i
track reconstruction. “ - !
O The relatively low efficiency for the full track is e ~ > 3 . @ i
explained by the presence of low momentum tracks, N S, O
and hence high curvature, for which single projection is .t . ,
not efficient. (top right) : . 2 P
D In the.fUture We plan to Work in 3D' 7505‘;8I0”I2(I)0”é2lol”24I10”é6l()l”28I0”:I3(;()”(I32I()”(I34{(I;I;360 7505180 200 220 240 260 280 300 320 340 360 0 759550 -40 -30 -20 -10 O 10 20 30 40 50 0
Z pos,mm z-coord x-coord
O For now we will move forward with the implementation
of the current 2D model on FPGA.
Accuracy: 0.983474 Accuracy: 0.908382
Precision (purity): ©0.980984 Precision (purity): 0.897114
Recall (efficiency): 0.978171 Segments Recall (efficiency): 0.870889 TraCkS
4
w0 1 fake | 10 — fake | 101
[ true [ true
1031 0.9 0.8
102.
0.6
102. 0.8 1
0.4
0.71 104
101.
, 0.2 _
— purity — purity
104 e —— efficiency 1004 00l efficiency
0.00 025 050 075 100 000 025 050 075 1.00 0.00 025 050 075 1.00 000 025 050 075 1.00
Model output Cut on model score Model output Cut on model score
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New GNN for FDC tracking Jefferdon Lab
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L The results shown look good, but we are still limited to 30 hits/nodes in the network, while FDC requires at least 100 nodes.
L We started designing a new GNN network capable of handling 150 nodes and 256 edges.
L The new GNN design uses the layer library from HLS4ML with a custom wrapper and aggregation functions.

L Also removed all dependency to external libraries — Hep.TrkX and sonnet from DeepMind.

H Iterates over each
node, gets weighted
sum of inbound and

e Trained three (3) keras neural input ei outbound nodes

e Using 'hlsdml" library, convert each

[2] -> [8] M builder
of the three (3) networks into
separate C++ projects N i “Message
e Manually/Script rename project files 4/ hidden node passing”
to append “myproject<_type>.*” [NHITS, 10] X network
where <_type>isanyof[ i, _n, e] [10+10+10] -> [8]
o Wrapper project to retrieve data

e / edges
[NEDGES]

N\

B builder edge <news
network

from stream and custom functions
to build B and M matrix values

Call each network within this

N N ¢ t NEDGES — e / edges
->
runner” top function e |—|  rtor101> 11 [NEDGES] o
ei / e_index ! )
[NEDGES,2] H / hidden
Runs over N [NHITS,10]
'tgrates over each iterations, final
edge, gets

parameters of src output is here

and dst hits to pass
into network

Sergey Furletov Streaming Readout Workshop SRO-XII, University of Tokyo 37
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Optimized GNN IP JefferSon Lab
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The GlueX trigger rate is up to 70 kHz, so on average we have ~14 us to process events.

We optimized the GNN to have a latency of ~10 us, which allows it to operate at 70 kHz.

On the other hand, the neural network fits in an FPGA and supports 150 nodes and 256 edges.
Next we plan to test it on hardware.

ITERATION TRIP

INTERVAL

MODULES & LOOPS v/ ; SLACK ~ LATENCY(CYCLES] LATENCY(NS)

PIPELINED BRAM(% DSP(%) LUT(%)
v @ runGraphNetwork (6) 9.955E3

edge_network (1) - 1.355E3

node_runner (1) ; 1.815E3

runGraphNetwork_Pipeline_INPUT_HIT_LOOP (1) - 795.000

runGraphNetwork_Pipeline_VITIS_LOOP_42_1 (1) - 1.510E3

runGraphNetwork_Pipeline_VITIS_LOOP_72_2 (1) - 2.570E3

runGraphNetwork_Pipeline_VITIS_LOOP_136_3 (1) - 1.290E3

12/03/24 Sergey Furletov Streaming Readout Workshop SRO-XII, University of Tokyo 38




Outlook Jefferdo
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L An FPGA-based Neural Network application would offer online event preprocessing and allow for data reduction based on physics
at the early stage of data processing.

L The ML-on-FPGA solution complements the purely computer-based solution and mitigates DAQ performance risks.
O FPGA provides extremely low-latency neural-network inference.

L Open-source HLS4ML software tool with Xilinx® Vivado® High Level Synthesis (HLS) accelerates machine learning neural network
algorithm development.

L The ultimate goal is to build a real-time event filter based on physics signatures.

Case study: jet tagging

QPM QCD-Compton

e (k) Study a multi-classification task: discrimination between highly energetic (boosted)

q, g, W, Z, tinitiated jets

t—-bW-bqq Z—qq W-qq q/g background

3-prong jet 2-prong jet 2-prong jet no substructure
and/or mass ~ 0

Figure 2.1: Feynman diagrams of the Quark Parton Model, QCD-Compton and Boson Gluon Fusion processes in NC DIS. Signal: reconstructed as one massive jet with substructure

o Jet substructure observables used to distinguish signal vs background [
Published in 2007

Measurement of multijet events at low $x_{Bj}$ and low $Q*2$ with the ZEUS detector at HERA

16 \\‘ [*] D. Guest at al. PhysRevD.94.112002, G. Kasieczka et al. JHEP05(2017)006, J. M. Butterworth et al. PhysRevLett.100.242001, etc..
osau
11.01.2019 Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs 25
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Xilinx VPK180 board Jefferéon Lab
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System Logic Cells (K) 7,352
LUTs 3,360,896

DSP Engines 14,352

m— \/ersal Adaptive SoC

System Controller

Featuring the Versal Premium XCVP1802-2MSELSVC4072 Adaptive SoC

Application Processing Unit Dual-core Arm® Cortex®-A72 QSFP-DD

Real-Time Processing Unit Dual-core Arm Cortex-R5F

GTYP Transceivers (32.75Gb/s) 2812

GTM Transceivers (58G (112G)) 140 (70)?
PCle w/ DMA & CCIX (CPM5) 2 x Gen5x8?
PCI Express 2 x Gen5x43

100G Multirate Ethernet MAC 8

~

600G Ethernet MAC

IS

400G High-Speed Crypto Engine

SFP-DD

microSD

3B Type-A UART — [

FMC+
(8 GTYPs, 68 user-
OSFP defined signals)
QSFP-DD e

: . b2k je :
ik : is b3 Trace Port Connector

”E :mﬂ 3 3 —— Power Connector
| | { : ;

| PCle” ATX
Power Connectors

12GB, 192-bit LPDDR4
Component @ 4266Mb/s

Versal™ XCVP1802-2MSELSVC4072 Adaptive SoC

JTAG

Zynq™ UltraScale+™ XCZU4EG MPSoC

Mode DIP Switch

Mode DIP Switch

" SFP-DD | SFP-DD
JTAG/UART/HSDP
(USB Type-C) Ethernet RJ-45

Power Good JTAG USB 3.0
QSFP-DD LEDs
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A D C b a S e d D AQ fo r PA N D A STT Jeomas Jeﬁersgrrh‘latl!;)ggelerator Facility
Level 0 Open VPX Crate - i e

ADC based DAQ for PANDA STT (one of approaches): gl e P e
« 160 channels (shaping, sampling and processing) A& 7 g )
per payload slot, 14 payload slots+2 controllers;
+ totally 2200 channels per crate;
» time sorted output data stream (arrival time, energy,...)
* noise rejection, pile up resolution, base line correction, ..

4+ All information from
the straw tube tracker
is processed in one unit.

4+ Allows to build a
complete STT event.

- Backplane
6U VPX Plug-In b
. B

Module \
y .
)
o |

4 This unit can also be

o

! i, » = | used for calorimeters
* 40 4-channel ADCs * 160 Amplifiers; readout and processing.
™ \ (configurable up to 1 GSPS); * 5 connectors for 32-
* Single Virtex7 FPGA pins samtec cables
Switch/Management Payload Slots

THT T YT TR T R W R R W% https://doi.org/10.1088/1748-0221/17/04/C04022
;""j“|"-“||.'~'=~'"1"f"'-"l"7""*”['|“'*" = e e ke e e O CR=) 2022 JINST 17_C04022
] ta—— e 1 L. Jokhovets, P KuIessa ..
’ [ | ; H ] ] I ‘ .o
e Hm”*._‘_?".”#”*?i s *"<h | dim | [ | | | [t | oo | [ | [ | | Powerful Backplane ' JULICH
| I | : [ g I | | | up to 670 GBs Forschungszentrum
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Step 1: Input Network Jefferdon Lab

as Jefferson National Accelerator Facility

input
network
Input data are
2] > [8
the clouds 21>

Stores the node
information, 10
H / hidden parameters, 8 hidden and
[NHITS,10] ..

2 original.

X / hits
[NHITS,2]

v
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Step 2a: Iterations (edge) Jeffergo

as Jefferson National Accelerator Facility

Output data

H / hidden
are the [NHITS, 10]
ribbons

e / edges

N\

[NEDGES]
B builder edge <news
NEDGES ' network e/ edges
->
[10], [10] | [10+101->[1] [NEDGES]
ei/ e_index
[NEDGES, 2]
Runs over N
Iterates over iterations, if f|nal.
each edge Iteration, output Is
8e here
gets
parameters
of src and dst
hits to pass

into network
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Step 2b: Iterations (node) Jefferdon Lab

as Jefferson National Accelerator Facility

Base node node
H / hidden g network
[NHITS,10]
[10+10+10] -> [8]
M builder
<new>
e / edges NHITS >
[NEDGES] [10], [10] <new>
H / hidden
[NHITS,10]

lterates over each node, *Aggregation
gets weighted sum of

inbound and outbound

nodes
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Step 3: Final edge output Jefferdon Lab

as Jefferson National Accelerator Facility

Output data are

P H / hidden
the ribbons e
e / edges \
[NEDGES]
B builder edge o
NEDGES -> - network e/ edges
[10], [10] —_— [10+10] -> [1] [NEDGES]
ei/ e_index
[NEDGES, 2]

Runs over N
iterations, if final
iteration, output is
here

Iterates over each
edge, gets parameters
of src and dst hits to
pass into network
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Simple Overview

Je on Lab

as Jefferson National Accelerator Facility

Step 1

Input
Network

Step 2a Step 2b Step 3
Edge update j N:::r::;?;i/ ‘ Edge output
I[terations

<new>

e / edges
[NEDGES]
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Event display, single track Jefferson Lab

as Jefferson National Accelerator Facility

40

y pos,m]

30
20
10

-10

-20

-30
-40

o
Hl||IIII|IIII|IHI‘IHI‘IIII|IIII|IIII|IIH’HH

o = N W A O O N 0 ©

_50 | | | | ‘ | | | | I 1 1 1 1 | 1 1 | | I | | | | | | | | |
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Tracking performance
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omas Jefferson National Accelerator Facility

y pos,mm

y pos,mm

y pos,mm

1
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Display Event: 106 Run: 3202

’[y (r/o strip, 0.4mm)

z (drift time, 8ns FADC)

4

|

10 15 20

Clusters for FPGA

25 30

z pos,mm

P T P S T
10 15 20

ML-FPGA response

s
25

30
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25
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50
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Display Event: 213 Run: 3202
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O Top rows: show ionization along the
track in GEMTRD detector.

» Red circles are reconstructed
clusters using some dE/dx
threshold. The size is
proportional to energy.

Middle rows: after filtering out the
noisy clusters, the coordinates of the
clusters are sent to the FPGA/GNN
for pattern recognition.

O Bottom rows: GNN provides labeling

of clusters (by color in the figure), the
same colors belong to the same
track.

Then clusters of the same color (tag)
are sent to the track fitting module:
LSTM.

The results of track fitting are
represented by lines in the figures.

The next step is to count all the
ionization in the corridor around the
track and send it to the PID module
(DNN).

O As a bonus, GEMTRD provides a track
segment for the global tracking
system.
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