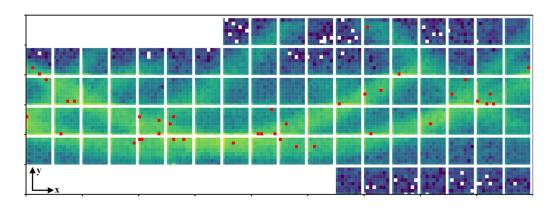
# Deep(er)RICH - Deep Reconstruction of Imaging Cherenkov Detectors



James Giroux

Streaming Readout XII, University of Tokyo December 4, 2024



#### Overview

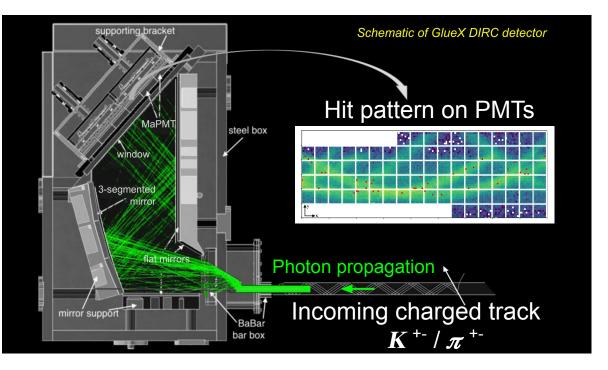
GlueX DIRC

Fast and Accurate Simulation

- PID Methods  $K^{+-}/\pi^{+-}$ 
  - Delta Log Likelihoods
  - Image Classification with Transformers
  - Performance

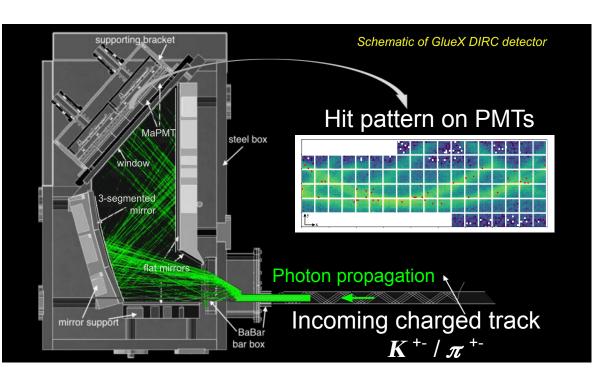
hpDIRC - Preliminary Fast Simulation

#### Detection of Internally Reflected Cherenkov Light (GlueX DIRC)



- 48 fused silica bars segmented into 4 bar boxes
- Two readout zones (optical boxes)
- Optical boxes contain distilled water and highly reflective focusing mirrors
- 6 x 18 PMT array for photon detection
  - One PMT 8 x 8 sensor array
- Provides location and timing information for individual photons

#### Detection of Internally Reflected Cherenkov Light (GlueX DIRC)



- 48 fused silica bars segmented into 4 bar boxes
- Two readout zones (optical boxes)
- Optical boxes contain distilled water and highly reflective focusing mirrors
- 6 x 18 PMT array for photon detection
  - One PMT 8 x 8 sensor array
- Provides location and timing information for individual photons

Goal: Characterize hit patterns from  $K^{+}$  /  $\pi^{+}$  as a function of < |p|,  $\theta$ ,  $\phi > (track)$ 

## Deep(er)RICH - Fast Simulation with Normalizing Flows

Define a bijective function f(z), s.t.

$$x = f(z) = f_N \circ f_{N-1} \circ ... f_1(z_0)$$

Transform the density through a change of variables Conditional on some parameters *k* 

$$\log p(\boldsymbol{x}|\boldsymbol{k}) = \log \pi(f^{-1}(\boldsymbol{x})|\boldsymbol{k}) + \sum_{i=1}^{N} \log \left| \det \left( \frac{\partial f_i^{-1}(\boldsymbol{x})}{\partial \boldsymbol{x}} \right) \right|$$

Maximize the likelihood of expected hit patterns under a base distribution

$$z \in N(0,1)$$

**Analytic Likelihood Computation** 

$$\mathcal{L} = -\frac{1}{|\mathbf{X}|} \sum_{\mathbf{x} \in \mathbf{X}} \log p(\mathbf{x}|\mathbf{k})$$

#### Deep(er)RICH - Learning at the hit level

- Abstract away from fixed input sizes
  - Remain agnostic to photon yield

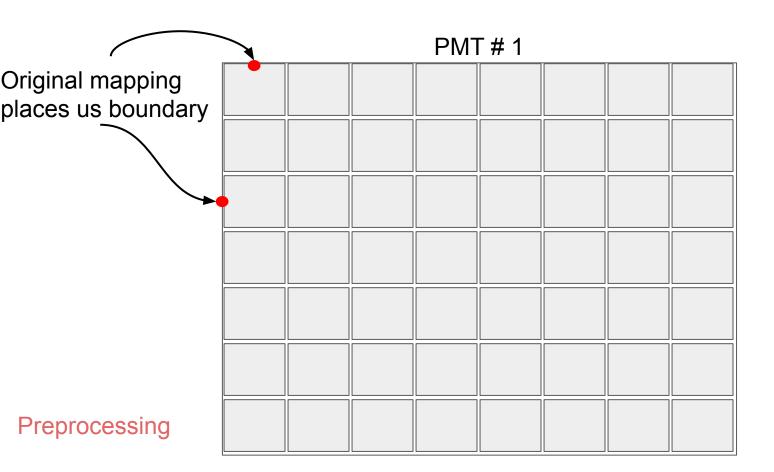
 $D_{i,j} = \begin{cases} \lfloor M_{PMT.}/18 \rfloor \cdot 8 + \lfloor N_{pixel.}/8 \rfloor & \text{(1)} \\ (M_{PMT.} \mod 18) \cdot 8 + (N_{pixel.} \mod 8) \end{cases}$  $x = D_j \cdot 6 \, mm + (M_{PMT.} \mod 18) \cdot 2 \, mm + 3 \, mm$ 

 $y = D_i \cdot 6 \, mm + |M_{PMT}|/18 \cdot 2 \, mm + 3 \, mm$  (2)

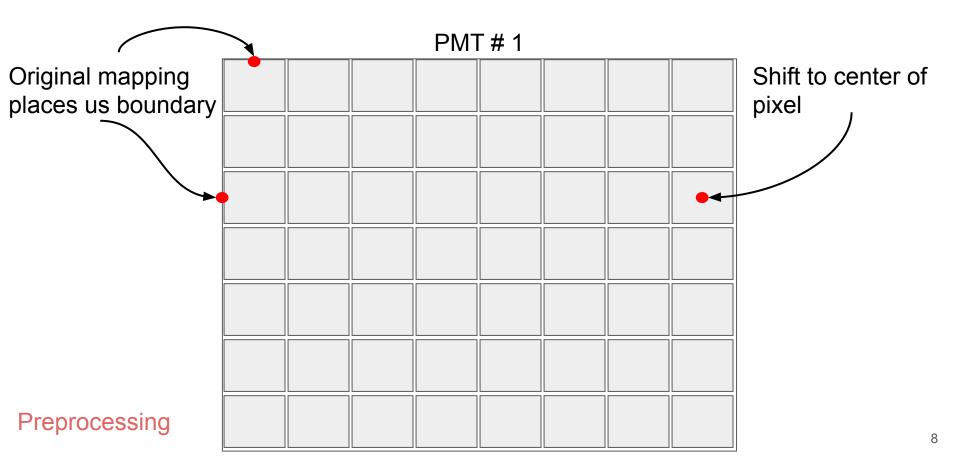
- Learn at the hit-level, conditional on < |p|,  $\theta$ ,  $\phi >$
- Normalizing Flows unable to deal with discrete distributions
  - DIRC readout has fixed row,col coordinate system<sup>(1)</sup>
  - Transform to x,y coordinate system (mm)<sup>(2)</sup>
  - Smear uniformly over individual PMT pixels

| TrackID | x (mm) | y (mm) | t (ns) | p   | $oldsymbol{	heta}$ | $\phi$ |
|---------|--------|--------|--------|-----|--------------------|--------|
| 1       |        |        |        | 3.0 | 5.0                | 90.    |
| 1       |        |        |        | 3.0 | 5.0                | 90.    |
|         |        |        |        |     |                    |        |
| N       |        |        |        | 4.0 | 7.0                | -90.   |
| N       |        |        |        | 4.0 | 7.0                | -90.   |

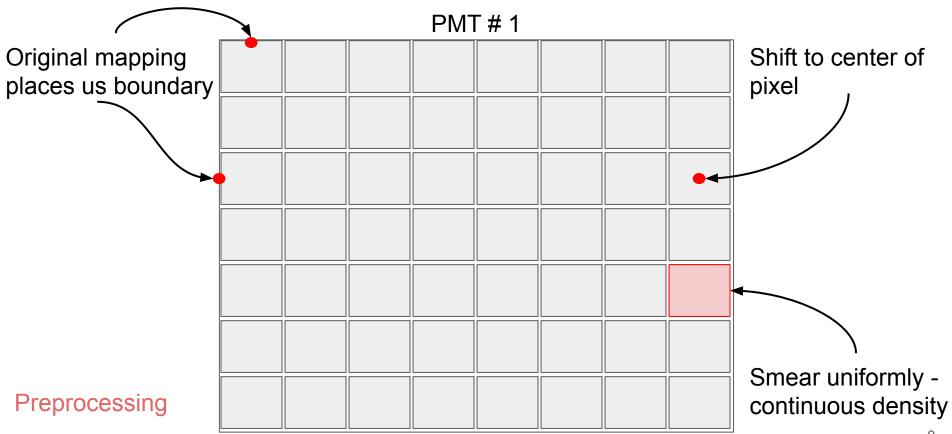
## Deep(er)RICH - Learning at the hit level cont'd...



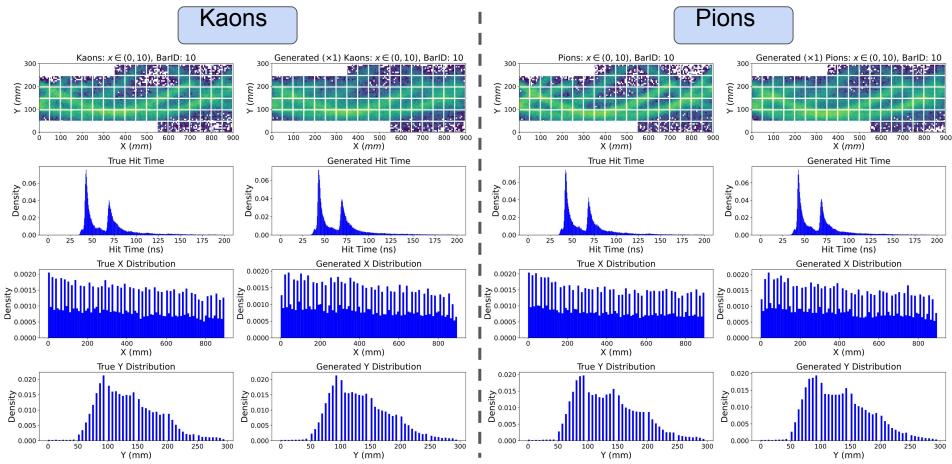
## Deep(er)RICH - Learning at the hit level cont'd...



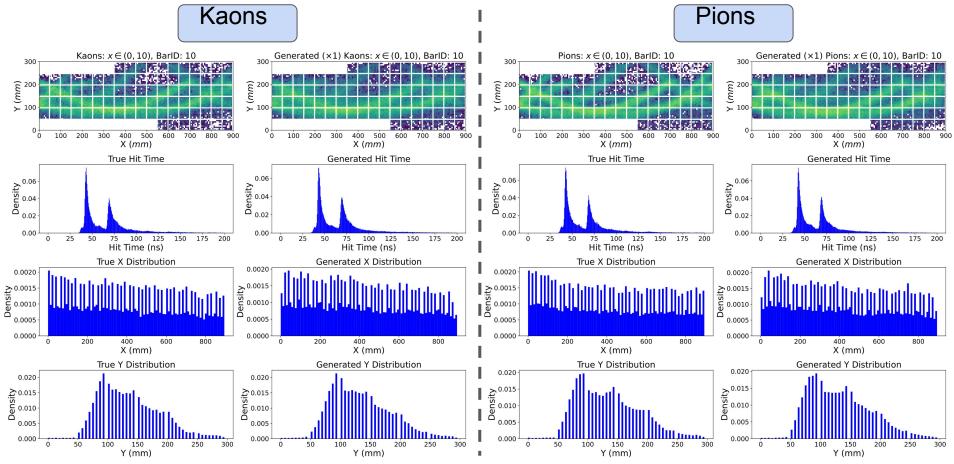
#### Deep(er)RICH - Learning at the hit level cont'd...



#### Fast Simulation - GlueX DIRC



#### Fast Simulation - GlueX DIRC



Simulation is fast - O(0.5)us per hit (effective)

## $\pi/K$ Separation

#### PID in the Base Distribution - Normalizing Flow Method

#### Recall our bijection

$$\boldsymbol{x} = f(\boldsymbol{z}) = f_N \circ f_{N-1} \circ ... f_1(\boldsymbol{z_0})$$

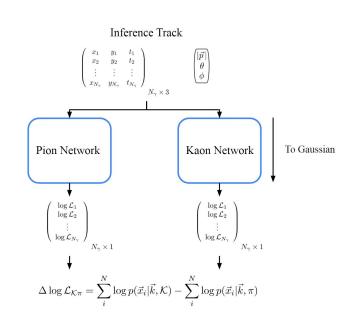
Recall our analytical computation of the likelihood under a change of variables

$$\log p(\boldsymbol{x}|\boldsymbol{k}) = \log \pi(f^{-1}(\boldsymbol{x})|\boldsymbol{k}) + \sum_{i=1}^{N} \log \left| \det \left( \frac{\partial f_i^{-1}(\boldsymbol{x})}{\partial \boldsymbol{x}} \right) \right| -$$

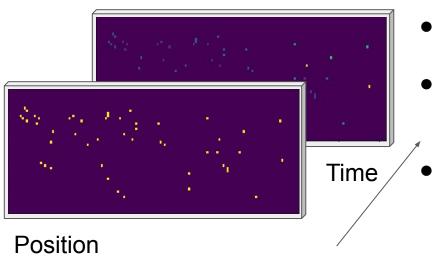
We can compute the DLL under the base distribution - summed contribution over hits

$$\Delta \log \mathcal{L}_{\mathcal{K}\pi} = \sum_{i}^{N} \log p(\vec{x}_{i}|\vec{k}, \mathcal{K}) - \sum_{i}^{N} \log p(\vec{x}_{i}|\vec{k}, \pi) \blacktriangleleft$$

Where the hypothesis of a pion/kaon is represented by individual networks

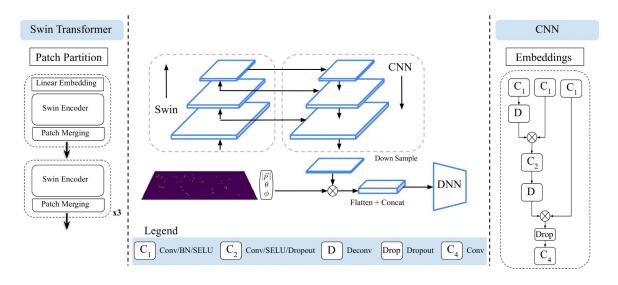


#### Working with Images - Vision Transformer Method



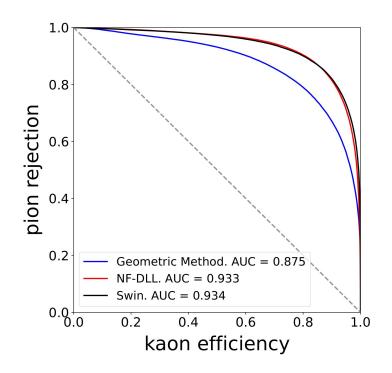
- Remain agnostic to photon yield
  - Individual tracks form "images" in optical boxes
    - Sparse point representations
    - Possibility of overlapping hits
      - Same x,y different times
      - Construct these as images as FIFO
      - Tends to be low percentage of overlap

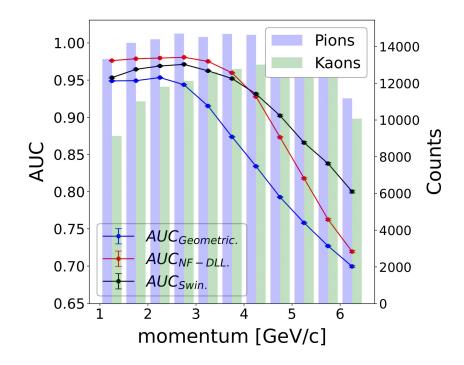
#### Working with Images - Vision Transformer Method cont'd...



- Hierarchical Vision Transformer (Swin) encoder style feature extraction
  - Windowed attention higher throughput
- Combine information through CNN utilize skip connections for different resolutions
- Inject kinematics as concatenated information to DNN

## $\pi/K$ Separation - GlueX DIRC

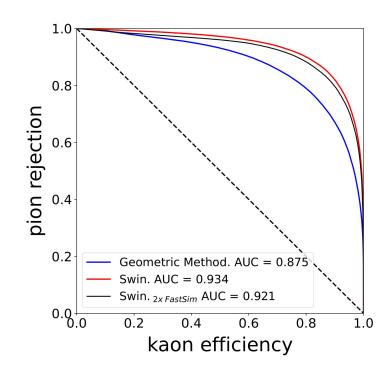


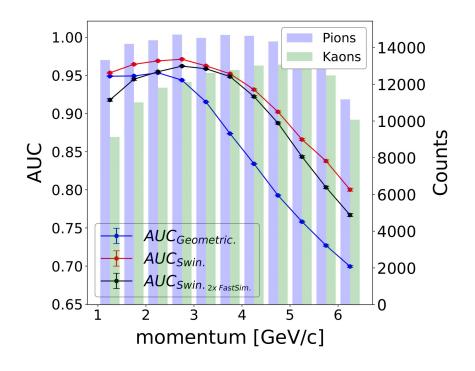


PID is fast - O(9)us per track with transformer (effective)

NF method slightly slower given additional computation needed

## Validation of Fast Simulation through Transformer





Trained on tracks from NF (fast simulation)
2x Original Dataset

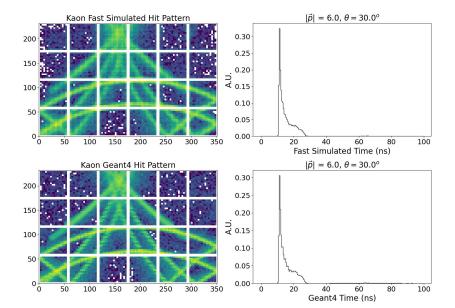
Tested on MC sample

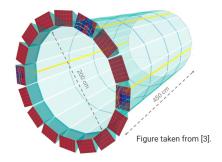
## hpDIRC - Preliminary Fast Simulations

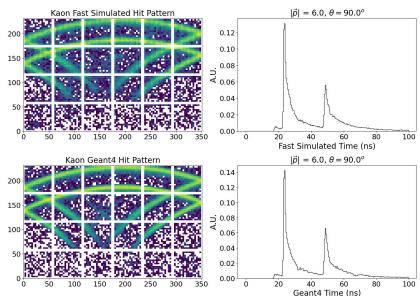
$$D_{i,j} = \begin{cases} \lfloor M_{PMT.}/6 \rfloor \cdot 16 + \lfloor N_{pixel.}/16 \rfloor & \text{(1)} \\ (M_{PMT.} \% 6) \cdot 16 + (N_{pixel.} \% 16) & \text{(1)} \end{cases}$$

$$x = 2 + D_j \cdot p_{width.} + (M_{PMT.} \% 6) \cdot \text{gap}_x + \frac{1}{2} p_{width.}$$

$$y = 2 + D_i \cdot p_{height.} + \lfloor M_{PMT.} / 6 \rfloor \cdot \text{gap}_y + \frac{1}{2} p_{height.}$$







#### Conclusion

#### Two Methods of PID

- Both able to generalize over continuous phase space
- Initial results show improved PID performance compared to classical methods at GlueX
- Transformer provides fast inference ~ 9us / track (effective)
- NF method slightly slower extra computation, overhead due to varying number of photons
- Working to optimize further for hpDIRC

#### Fast and Accurate Simulation

- $\circ$  Generates optical boxes directly conditional on track parameters <  $|m{p}|$  ,  $m{ heta}$  ,  $m{\phi}$  >
  - "Skips" all track propagation
  - Fast (NF) and full simulations ~ "indistinguishable"/same performance for a classifier
- Ability to generate photons in batches 0.5 us / photon (effective)

#### References

[1] Fanelli, Cristiano, James Giroux, and Justin Stevens. "Deep (er) Reconstruction of Imaging Cherenkov Detectors with Swin Transformers and Normalizing Flow Models." arXiv preprint arXiv:2407.07376 (2024).

[2] Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." *Proceedings of the IEEE/CVF international conference on computer vision*. 2021.

[3] Kalicy G 2022 Developing high-performance DIRC detector for the Future Electron Ion Collider Experiment (arXiv:2202.06457) URL https://arxiv.org/abs/2202.06457