R-matrix Analysis of ⁸Be System

Som Nath Paneru Los Alamos National Laboratory

CSEWG Meeting 2024

LA-UR-24-31552

Outline

- Motivation
- » R-matrix analysis of ⁸Be
 - Results from AZURE2 analysis
 - Updates on Energy Dependent Analysis (EDA) analysis of ⁸Be system.

Motivation

- Charged particle-induced reactions on light nuclei are important for nuclear astrophysics and nuclear applications.
- R-matrix code EDA code from LANL is used for light charged particle evaluations results of which are reported to ENDF data library.
- For the case of ⁸Be compound system, the ENDF/B-VIII.0 evaluation only included data for reaction channels resulting in the ground state of residual nucleus such as ⁶Li(d,n₀)⁷Be, ⁶Li(d,p₀)⁷Li and excluded the data for reactions resulting the residual nucleus in excited state such as ⁶Li(d,n₁)⁷Be, ⁶Li(d,p₁)⁷Li, etc.
- This work: Used AZURE2 code to perform a new complete *R*-matrix analysis with a subset of data available in literature including the recent measurement from S. N. Paneru et al., Phys. Rev. C 110, 044603 (2024).

R-matrix Analysis of ⁸Be System with AZURE2

- Multilevel-Multichannel *R*-matrix analysis to describe the ⁸Be system.
- > Channel radius values for different channels are taken from EDA calculations for comparison purposes.
- > Data included for these reaction channels:

⁶ Li(d,d) ⁶ Li	⁷ Li(p,p) ⁷ Li*
⁶ Li(d,α)α	⁷ Li(p,n ₀) ⁷ Be
α(α,α)α	⁷ Li(p,n ₁) ⁷ Be
⁶ Li(d,n ₀) ⁷ Be	⁷ Li(p,α)α
⁶ Li(d,n ₁) ⁷ Be	α(α,p) ⁷ Li
⁶ Li(d,p ₁) ⁷ Li	α(α,p) ⁷ Li*
⁶ Li(d,p ₁) ⁷ Li	⁷ Be(n,p) ⁷ Li
⁷ Li(p,p) ⁷ Li	⁷ Li(p,γ) ⁸ Be
⁷ Be(n,α) α	⁶ Li(d,n ₀₊₁) ⁷ Be
⁷ Li(p,n ₀₊₁) ⁷ Be	

R	Channel	Channel radius (fm)
1	^6Li+d	6.4639
2	$^{7}Li + p$	4.15
3	${}^{7}Li^{*} + p$	5.0
4	$^7Be + n$	4.15
5	$^{7}Be^{*}+n$	5.0
6	$\alpha + \alpha$	4.0
7	$^{8}Be + \gamma$	0.0

- Red: Data for reactions channels were not included in existing ENDF/EDA analysis
- > ⁸Be+ γ partition is not included in existing ENDF/EDA analysis

⁸Be Levels Information

- > Taken from NNDC/ENSDF.
- > The 22.63 MeV level was assigned 1⁺ spin and parity.
- The 22.98 MeV level was assigned 2⁺ spin and parity
- > The 21.5 MeV state was assigned 3⁺ spin and parity.
- Max orbital angular momentum, I=4

Background Levels

- ➢ 0⁺ at 32 MeV
- ➢ 2⁺ at 32 MeV
- ➢ 4⁺ at 32 MeV

Data Sources:

- > EXFOR
- And recent measurement of deuteron induced reactions on ⁶Li. (S. N. Paneru *et al.*, Phys. Rev. C 110, 044603 (2024))

Uncertainty quantification

- We used Bayesian analysis to infer the uncertainties in the *R*-matrix parameters and the calculated cross sections.
- Bayesian *R*-matrix Inference Code Kit (BRICK) was used for uncertainty quantification.
- BRICK acts as an intermediate state to communicate between the Markov chain Monte Carlo Python routine *emcee* and AZURE2.
- Uniform priors were chosen for reduced width amplitudes and the ANC's while log normal distributions were chosen as priors for the normalization parameter.
- Simultaneous fitted 2523 data points including all reactions channel with AZURE2.
- > All together 227 parameters were used in the analysis.

Results and comparisons with EDA

6 Li(d,n₀)⁷Be and 6 Li(d,n₁)⁷Be

- > Paneru *et al.* data provided additional constraints to the ${}^{6}Li(d,n_{0,1}){}^{7}Be$ fits at higher energies.
- > The enhancement of cross section around $E_{c.m.}=6$ MeV is not supported by this work.
- The non-zero cross sections observed from EDA calculations is due to /=0 partial wave (s-wave) that was introduced for these excited state partitions.

Elwyn *et al.* (Phys. Rev. C, 16, 1977), McClenahan *et al.* (Nucl. Phys, 11, 1975), Hirst *et al.* (Philosophical Magazine, Vol.45, Issue.366,1954), Ruby *et al.* (Nuclear Science and Engineering, Vol.71, 1979), Szabo *et al.* (Nuclear Physics, Section A, Vol.289, 1977), Guzhovskij *et al.* (Izv. Rossiiskoi Akademii Nauk, Ser.Fiz., Vol.44 (1980)), S. N. Paneru *et al.*, Phys. Rev. C 110, 044603 (2024) (for activation and Paneru)

⁶Li(d,p₀)⁷Li and ⁶Li(d,p₁)⁷Li

> The enhancement of cross section around $E_{c.m.}=6$ MeV is not supported by this work.

7 Li(p,n₀) 7 Be and 7 Li(p,n₁) 7 Be

- ⁷Li(p,n)⁷Be is widely used as monoenergetic neutron source.
- The resonance at E_{c.m.}=4.4 MeV is strongly affected by the properties of 21.5 MeV state for which parity is not assigned.
- Use of either 3⁺ or 3⁻ for 21.5 MeV state produces fits of similar quality. Could be the interference effect of two nearby resonances.
- Angular distributions data are well reproduced except for the near threshold data from Elbakr *et al.* at θ_{lab}=0°.

⁷Li(p,p)⁷Li

- > This work included the 7 Li(p,p) 7 Li* reaction data in the analysis.
- Elastic scattering data at high E_{c.m.} was added into the analysis.

⁶Li(d,d)⁶Li

- > EDA introduces data at high energies which AZURE2 couldn't fit.
- Only used elastic scattering data below deuteron breakup threshold.
- Lack of spin and parity assignments at high excitation energies in ⁸Be limits to fit the elastic scattering data at high energies.

6 Li(d, α) α

A scaling factor of $\frac{1}{2}$ have been applied to α -production data to convert it into reaction cross section data for reaction channels with identical particles.

Ntemou *et al.* (Nucl. Instrum. Methods in Physics Res., Sect.B, Vol.407, p.34 (2017), Mani *et al.* (Proceedings of the Physical Society , Vol.85, 1965), McClenahan *et al.* (Physical Review, Part C, Nuclear Physics, Vol.11, 1975), Gould *et al.* (Nuclear Science and Engineering, Vol.55, 1974), Elwyn *et* 11/6/2024 11 *al.* (Physical Review, Part C, Nuclear Physics, Vol.16, 1977), Foteinou *et al.* (Nucl. Instrum. Methods in Physics Res., Sect.B, Vol.269, 2011)

⁷Li(p, α) α , ⁷Li(p, γ)⁸Be and $\alpha(\alpha,p)$ ⁷Li

- > $^{7}Li(p,\gamma)^{8}Be$ is important for physics beyond the standard model.
- ► Over prediction of cross section in current evaluation for both ${}^{7}\text{Li}(p,\alpha)\alpha$ and $\alpha(\alpha,p){}^{7}\text{Li}$ reactions are related to properties of $E_x=19.86$ MeV state in ${}^{8}\text{Be}$.

Rice: Cassagnou *et al.* (Nuclear Physics, Vol.33, Issue.3, p.449 (1962)), Mani *et al.* (Nuclear Physics, Vol.60, Issue.4, p.588 (1964)), Saclay:Cassagnou *et al.* (Nuclear Physics, Vol.33, Issue.3, p.449 (1962)), D. Zahnow *et al.* (Zeitschrift fuer Physik A, Hadrons and Nuclei, Vol.351, p.229 (1995)), *C.H.King et al.* (Phys. Rev. C,16, 1712, 1977), R. J. Slobodrian *et al.* (Zeitschrift fuer Physik A, Hadrons and Nuclei, Vol.308, Issue.1, 11/6/2024 12 p.15 (1982)

⁷Be(n,p)⁷Li and ⁷Be(n, α) α

- > $^{7}Be(n,p)$ and $^{7}Be(n,\alpha)\alpha$ are important for cosmological lithium problem.
- Kohler *et al.* data for ⁷Be(n,p) differs from the latest n_TOF data by 40%.
- Both data sets for ⁷Be(n,p) complements the ⁷Li(p, n)⁷Be data at high energies quite well.
- New measurement required to sort out the differences.
- Limited data sets available for ${}^{7}\text{Be}(n,\alpha)\alpha$.

$\alpha(\alpha,\alpha)\alpha$

- > $\alpha(\alpha,\alpha)\alpha$ is important for 'triple-alpha' process.
- AZURE2 in its open access form does not calculate the identical particle scattering cross section.
- The source code was modified to calculate the cross section from the phase shifts.
- > Only 0+, 2+, and 4+ states in ⁸Be was used to constrain the fits to $\alpha(\alpha,\alpha)\alpha$ cross section data.
- Γ=5.42 ± 0.04 eV consistent with previous evaluations.

Updates on ⁸Be evaluation using EDA

- > Added data in existing evaluation for the reaction channels leading to excited state nucleus in residual nucleus.
- > Data for ${}^{6}Li(d,d){}^{6}Li$ below $E_{c.m.}=4$ MeV is added into the evaluation.
- Maximum orbital angular momentum have been increased to 4 to better explain the angular distribution data for various charged particle reaction channels.
- > Preliminary results for some of the channels are shown.
- Ongoing Work: Add more data into evaluation and optimize the parameters to explain all reaction channels. The results will be reported to ENDF-IX.

Summary

- Preliminary results from *R*-matrix analysis of ⁸Be system with AZURE2 was compared with EDA calculations.
- Bayesian analysis was used to infer the uncertainties in *R*-matrix parameters and the calculated cross sections.
- Lessons learned from this work is being implemented into an ongoing effort to update the ⁸Be evaluation using EDA code.
- > The new evaluation will be reported to ENDF-IX.

Collaborators

H.Y. Lee¹, R. J. deBoer², M. Paris¹, G. M. Hale¹, M. Febbraro³, E. A. Bennett¹,
C. Fichtl¹, N. A. Gibson¹, C. Hamilton¹, S. A. Kuvin¹, K. Manukyan², M. Mosby¹, C. Prokop¹, D. Robertson², H. Sasaki¹, and E. Stech²

¹Los Alamos National Laboratory, Los Alamos, NM 87545,USA ²University of Notre Dame, IN 46556, USA ³Air Force Institute of Technology, Wright-Patterson AFB, OH 45433, USA

Thank You.

