Recent Results from Neutron-Induced Fission

Anthony Ramirez

On behalf of the LLNL/LANL/TUNL Collaboration

CSEWG 2024

LLNL-PRES-868963

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Outline

Motivation

Recent Experimental Studies and Results

 Long- and short-lived fission-product yields from neutron induced fission on ²³⁹Pu, ²³⁵U, and ²³⁸U

Summary

Fission Process and Observables

We develop high-precision fission product yield energy dependence from 0.1 to 15 MeV

Measurement of Long-Lived Fission Products Using Monoenergetic Neutron Beams

Fission Product Yield = N_X / N_{fis} N_X = number of atoms of a specific fission product N_{fis} = total number of fissions

Motivation: Lack of FPY Data in Broad Energy Range for the Major Actinides

M.B. Chadwick *et al.* Nuclear Data Sheets 111 (2010) 2923 I. Thompson *et al.* Nucl. Sci. Eng. **171**, 85 (2012)

First Results: ¹⁴⁷Nd FPY from Neutron-Induced Fission of ²³⁹Pu

M.E. Gooden et al., NDS 131, 319 (2016) M.E. Gooden et al., PRC 109, 044604 (2024) J. Silano et al., NIMA 1063, 169234 (2024)

K. Kolos et al., PRC 110, 024307 (2024) M.A. Kellett et al., Appl. Rad. and Iso. 166, 109349 (2020)

¹⁴⁷Nd FPY from Neutron-Induced Fission of ²³⁵U, ²³⁸U, and ²³⁹Pu

A. Tonchev et al. Submitted to Nucl. Data Sheets (2024)

Fission Product Yields from ^{235,238}U(n,f) and ²³⁹Pu(n,f)

Fission Product Yields from ^{235,238}U(n,f) and ²³⁹Pu(n,f)

Fission Product Yields from ^{235,238}U(n,f) and ²³⁹Pu(n,f)

н

.

Comparison with GEF and BeoH

Comparison with GEF and BeoH

Fission Product Mass Distribution: What Have We Learned So Far?

At higher energies, 4 – 15 MeV:

All is consistent with what we know

- The symmetric FPYs steeply increase
- The two asymmetric FPY's slightly decrease
- The very asymmetric FPY's (the wings) slightly increase

Fission Product Mass Distribution: What Have We Learned So Far?

GEF 3.1 Calculations

At higher energies, 4 – 15 MeV:

All is consistent with what we know

- The symmetric FPYs steeply increase
- The two asymmetric FPY's slightly decrease
- The very asymmetric FPY's (the wings) slightly increase

At lower energies, 0.5 – 4 MeV:

 Some high yields from the two asymmetric mass distributions increase

Expand the theoretical capabilities to understand the evolution of the FPY at low neutron energies

Short-Lived Fission Product Yield Data from Neutron-induced Fission on ²³⁵U, ²³⁸U, and ²³⁹Pu

Measurement of Short-Lived Fission Products Using RABITTS

S. Finch et al. Nuc. Instrum. Meth A 1025, 166127 (2022)

Reaching the very short-lived fission product yields

complex gamma-ray spectra

FPYs from ²³⁸U(n,f) to Support Reactor Anti-Neutrino Anomaly

- 60 short-lived fission products with half-lives from seconds to minutes on ²³⁵U, ²³⁸U, and ²³⁹Pu at E_n = 0.06, 0.5, 2.0, 4.6, 9.0, and 14.8 MeV
- Isomeric fission-yield ratios for a handful of fission products to support theory assessment on average fission fragments angular momentum
- Support nuclear data evaluation groups to identify the most important FPs contributing to the reactor anti-neutrino anomaly and the so called "bump"

W. Tornow et al. prepared for publication

Short-Lived FPYs from ²³⁸U(n,f) at E_n=4.6 MeV

LINL-PRES-753150

Summary: Fission Product Yield Real Estate Map

Acknowledgements

R. MALONE A. RAMIREZ N. SCHUNCK J. SILANO M. STOYER A. TONCHEV M. VERRIERE T. BREDEWEG M. CHADWICK M. GOODEN D. VIEIRA J. WILHELMY

S. FINCH A. BRACHO I. TSORXE F. KRISHI C. HOWELL W. TORNOW D. BALABANSKI M. CUCIUS A. OBERSTEDT A. STATE

J. ENDERS M. PECK N. PIETRALLA V. WENDE

Strong Partnerships With Various Research Groups to Study Fission

Error estimation on the FPY Measurements:

Relative FPY Ratio

- 1. Statistical uncertainties of γ -ray peak counts (1-2%)
- 2. Relative HPGe detector efficiency (1-2% including the fit)

Absolute FPY energy dependency:

- 1. Statistical error of γ -ray peak counts (1-3%)
- 2. Absolute detector efficiency (2-3% including the fit)
- 3. Branching ratios $(0.2 8\% (^{147}Nd))$
- 4. Absolute FC efficiency (3% experimentally, 0.5% simulation)
- 5. Kinematic focusing (up to 1.4%)
- 6. Isotopic corrections (0.2% for ²³⁹Pu, larger for ²³⁵U)
- 7. Low energy neutrons (<1%)
- 8. Neutron flux fluctuation correction (<0.3%)
- 9. Efficiency conversion ratio between close and standard geometry (<1%)
- 10. True coincidence summing (<1.5%)
- 11. Random coincidence summing (<0.2%)
- 12. Sample weight (<0.4%)
- 13. Self-absorption of γ -ray (0.3 3%)

Summary

- Our cumulative FPYs provide a comprehensive set of data from the three major actinides in the energy region from 0.5 to 15.0 MeV with small neutron energy steps
- The data analysis was significantly improved, reducing the overall uncertainties and providing more quantitative basis for evaluating of these cumulative FPY data
- We developed new capabilities to perform correlation measurements in fission in direct reactions that can be benchmarked with inverse kinematic measurements

We are in the midst of a fission renaissance!

