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▪ Fission modeling: Predictions of fission fragments initial conditions

• Mass distribution of fission fragments: Plutonium isotopes (2D simulations)

• Number of particles in fragments: Collective fluctuations on particle number

• (Spin distributions: Combined AMP+PNP)

• Total kinetic energy: Projection + direct Coulomb

▪ New computational capabilities

• FPY: FELIX-3D (ASC/PEM L2 milestone)

• Real-time Fission events: TDHFB solver

• Evaluation: FETA framework

Outline
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Fission Science
Two major research areas for fission theory: cross sections (~ probabilities that fission happens) and fission 
products (includes neutrons, gammas, fragments, etc.)

18 minutes of this talk 2 minutes of this talk
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Fission Theory Pipeline
Physics-based fission models involve calculations of static nuclear properties (=nuclear structure) and time-
dependent simulations (=large-amplitude collective motion)

Potential energy 

surface

Time-dependent 

dynamics

Actual 

observables

▪ Particle number  (PNP)
▪ Spin distribution (AMP)
▪ Excitation energy (PNP, TDHFB)

▪ Fission fragment distributions (TDGCM)
▪ Real-time fission events (TDHFB)

▪ Fission evaluation (FETA)
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Modeling: Distribution of fission fragments
We computed the systematics of initial fission fragment distributions at 𝐸𝑛 ≈ 1 MeV for 
plutonium isotopes with our PESO framework

LLNL-PRE-822651

Initial mass distribution of fission fragments 
in even-even Plutonium isotopes (SkM*)
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▪ Average number of particles in fission fragments 
obtained by integrating the density

▪ Better estimates with particle number projection:

• Integer values…

• Distribution of particle numbers at each scission point

▪ Collective dynamics in deformation space implies:

Modeling: Number of particles
Particle number projection techniques can be extended to estimate a distribution of particle number 
in fission fragments for each scission configuration

LLNL-PRE-822651

What is the impact of collective correlations on particle 
number in fission fragments?
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Modeling: Number of particles
We are extending the generator coordinate method with Gaussian overlap approximation (GOA) to 
include quantum corrections in estimates of particle numbers in fission fragments

LLNL-PRE-822651

▪ Extend GCM+GOA to the projection operator on particle 
numbers in fission fragments 

• Equation of motion for change in particle number from deformation

• Probability of (𝑍𝑓, 𝑁𝑓) modified by quantum correction term

▪ Validity of GOA determines validity of the calculation

▪ Technical challenges due to non-orthogonal bases

Probability of having 𝑁𝑓 neutrons in scission 

configurations with average value 𝑁𝑓
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▪ Angular momentum projection (AMP) gives spin distribution of in scission configuration q

▪ Particle number projection gives particle content at each scission configuration q

▪ TDGCM gives probability of populating scission configuration q

▪ All of the above combined will give spin distribution of fission fragment with Zf protons and Nf 
neutrons

Modeling: Spin distributions of fission fragments
We combine angular momentum projection, particle number projection and large-amplitude 
collective dynamics to predict the spin distributions of fission fragments
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Modeling: Predicting TKE
We are developing a model to predict TKE in fission by leveraging particle number projection 
techniques and estimates of the Coulomb repulsion between fragments

LLNL-PRE-822651

▪ TKE are used to determine total excitation energy (TXE) of 
fission reaction from energy conservation

• Direct measurements of E* of each fragment not possible in < 10-15s…

• Calculations of E* among the most challenging

▪ TKE  (Direct) classical Coulomb interaction energy between 
fragments ∝  𝛼𝑍𝐿𝑍𝐻/𝐷

TKE(𝐴𝑓) ∝ ෍

𝒒

ℙ(𝒒) × ෍

𝑍𝑓+𝑁𝑓=𝐴𝑓

𝑝 𝑍𝑓 , 𝑁𝑓 , 𝒒 𝛼
𝑍𝑓 𝒒 (𝑍 − 𝑍𝑓 𝒒 )

𝐷(𝒒)

Quality of TKE very dependent on quality of potential 
energy surface and scission configurations
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▪ FELIX gives the probability for the fissionning nucleus 
to have a given shape q at time t

▪ Solution of a Schrödinger-like equation

Capabilities: FELIX3D
We have extended the capability of our TDGCM code to simulate fission dynamics in 3-dimensional 
deformation spaces

LLNL-PRE-822651

▪

•

•

▪ FELIX: Large-amplitude collective dynamics

▪

▪
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Capabilities: FELIX3D
Very preliminary results with a sub-par 3D potential energy surface give encouraging results: 
symmetric fission is (too much…) hindered compared to simulations in 2D collective spaces.

LLNL-PRE-822651

240Pu
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Capabilities: TDHFB Solver
We have developed a new code to solve the time-dependent Hartree-Fock-Bogoliubov (TDHFB) 
equation to simulate real-time fission events and extract the excitation energy of fission fragments

LLNL-PRE-822651

▪

•

•

▪

▪ TDHFB: Real-time nuclear dynamics

▪

▪ Modular, template-based C++ code

• Expansion of time-dependent HFB spinors in one-center 
harmonic oscillator basis

• Fully interfaced with HFBTHO and with a newly-developed 
Skyrme HFB solver

• OpenMP threading and placeholder for GPU accelerations 
through placeholders for performance portability layers 
(RAJA, KOKKOS, etc.)

▪ Version 1: proof of principle

✓ Verify system can actually fission…

✓ Quantify conservation of energy and particle number

✓ Quantify drift in center of mass (0 if infinite basis)
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Capabilities: TDHFB Solver
We find that a heavy actinide nucleus such as 240Pu can fission even when TDHFB implemented in the HO 
basis and that conservation laws are obeyed with excellent precision 

LLNL-PRE-822651

Scission 
region

Energy

Q40
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Capabilities: Fission Evaluation Tools and Analytics (FETA)
We are developing a suite of tools to compute independent ( ) fission yields as well as the prompt 
( ) fission spectrum

LLNL-PRE-822651

▪

•

•

▪

▪

▪ FETA: Evaluation of fission data based on 
statistical reaction theory

▪ Design principle: every physics input/model should 
be easily replaced by the user

• Modular Python-based framework 

• Characteristics of fission fragments at scission externally 
provided by user through tables, experimental data or 
preset inputs

• Fission fragments decayed with YAHFC

• Fission observables reconstructed from YAHFC outputs

▪ Version 1: observables

• Independent fission yields

• Prompt neutron and gamma spectrum 
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Capabilities: Fission Evaluation Tools and Analytics (FETA)
FETA is easy to use – it relies on a YAML configuration file and runs all fragment decay in parallel using MPI

LLNL-PRE-822651

from fpy import config,yields,task_manager,io

# setup MPI environment

do_mpi = True

mpi_setup = task_manager.MPISetup(do_mpi)

# rank 0 reads configuration (only relevant if MPI is active)

conf_0 = None

if mpi_setup.rank == 0:

        conf_0 = config.Configuration('/home/toto/git/fpy/tests/fpy.yaml’)

if do_mpi:

        conf = mpi_setup.comm.bcast(conf_0, root=0)

else:

        conf = conf_0

# define instance for independent yields and decay fission fragments

new_yields = yields.IndependentYields(conf, mpi_setup)

dico_decay = new_yields.run_decays()

# rank 0 computes yields and records the results

if mpi_setup.rank == 0:

        mat       = new_yields.set_transitions(dico_decay)

        all_Y_ind = new_yields.get_yields()

        output = io.IO(conf.conf_data['Files']['Yields']['Write'])

        output.write(dico_decay, new_yields)
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Conclusions
LLNL effort is focused on developing and applying microscopic models to describe the initial conditions of 
fission fragments and provide guidance for evaluations

▪ We have focused our modeling efforts on

• Efficiently generating FPY at scission with PESO framework and FELIX (2D)

• Improving estimates of particle number in FFs with quantum corrections

• Developing a semi-phenomenological model for TKE

▪ We have extended our FELIX capability by allowing simulations of FPY in 3D collective spaces

▪ We have developed two new capabilities

• TDHFB solver in a basis to estimate excitation energy of fission fragments

• FETA framework based on YAHFC (for now) to perform in-house FPY evaluations

▪ On-going work:

• Finalizing study of quantum corrections on particle numbers in FFs

• Predict spin distributions of fission fragments by combining AMP+PNP+FPY

• The fun stuff: Physics studies with new FELIX-3D and TDHFB tools
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