ENDF/B-VIII.1 Performance for RPV Fluence and Reactor Dosimetry Applications

Greg Fischer

fischega@westinghouse.com

Introduction

- This presentation contains preliminary comparisons of calculated reaction rates for reactor dosimetry sensors based on the latest nuclear data to current methods
- Calculations are performed with two-dimensional deterministic (S_N) methods
 - P₅ anisotropic scattering
 - S₁₆ quadrature

Data Description

- The "current" data:
 - Transport cross sections: 47n20g BUGLE-96 (released in 1996)
 - Based on ENDF/B-VI.3
 - "Fine" 199n42g library processed by AMPX
 - "Broad" 47n20g library collapsed from 199n42g using spectra from a 1D calculation
 - Dosimetry cross sections: SNLRML (released in 1993)

Data Description

- The "latest" data:
 - Transport cross sections: 45n20g
 - Based on ENDF/B-VIII.1
 - "Fine" 200n47g library processed by NJOY and TRANSX
 - "Broad" 45n20g library collapsed from 200n47g using spectra from a 2D calculation
 - Added a few groups > 0.1 MeV; subtracted several < 0.1 MeV
- Dosimetry cross sections: IRDFF-II SNLRML

Sensors

 Westinghouse maintains a large database of measurements from reactor dosimetry sensors placed outside the reactor vessel at operating LWRs.

Material	Reaction of Interest	Neutron Energy Response ⁽¹⁾	Product Half-Life	Dosimeter Capsule Position ⁽²⁾	Gradient Chain ⁽³⁾
Copper	⁶³ Cu(n,α) ⁶⁰ Co	4.53-11.0 MeV	5.271 y	2-Cd	No
Titanium	⁴⁶ Ti(n,p) ⁴⁶ Sc	3.70-9.43 MeV	83.788 đ	2-Cd	No
Iron	⁵⁴ Fe(n,p) ⁵⁴ Mn	2.27-7.54 MeV	312.13 d	1-B & 2-Cd	Yes
Nickel	⁵⁸ Ni(n,p) ⁵⁸ Co	1.98-7.51 MeV	70.86 đ	2-Cd	Yes
²³⁸ U ⁽⁴⁾	²³⁸ U(n,f) ¹³⁷ Cs	1.44-6.69 MeV	30.05 y	3-Cd	No
Niobium	93 Nb $(n,n')^{93m}$ Nb	0.95-5.79 MeV	16.13 y	3-Cd	No
²³⁷ Np ⁽⁴⁾	²³⁷ Np(n,f) ¹³⁷ Cs	0.68-5.61 MeV	30.05 y	3-Cd	No
Cobalt-A1	⁵⁹ Co(n,γ) ⁶⁰ Co	Thermal	5.271 y	1-B & 2-Cd	Yes

Table 1-1 Dosimeter Neutron Reactions

Notes:

1. Energies between which 90% of activity is produced (235U fission spectrum). [12]

2. B denotes bare and Cd denotes cadmium-shielded.

3. Determined with additional radiochemical analysis.

Vanadium-encapsulated ²³⁸U and ²³⁹Np fission monitors are currently unavailable.

- Comparisons that follow show computed reaction rates
 - ("latest" / "current")

DB: ratio_cu63a_cavity.silo

DB: ratio_ti46p_cavity.silo

DB: ratio_fe54p_cavity.silo

DB: ratio_ni58p_cavity.silo

DB: ratio_u238f_cavity.silo

DB: ratio_nb93n_cavity.silo

DB: ratio_np237f_cavity.silo

DB: ratio_co59g_cavity.silo

Measurement Database

 The Westinghouse database of <u>ex-vessel</u> dosimetry measurements has:

	Individual Sensor Reaction Rate				
Reaction	Average M/C	% Std Dev	Samples	Reactors	
Cu-63 (n,α) Co-60	0.90	11.9	363	37	
Ti-46 (n,p) Sc-46	0.93	11.0	338	36	
Fe-54 (n,p) Mn-54	0.92	12.1	366	37	
Ni-58 (n,p) Co-58	0.88	11.6	358	37	
U-238 (n,f) FP (Cd)	0.93	11.5	146	15	
Nb-93 (n,n') Nb-93m (Cd)	0.97	13.3	218	31	
Np-237 (n,f) FP (Cd)	1.02	14.1	99	14	
Total	0.92	12.7	1888	37	

Conclusions

- In ENDF/B-VIII.1, lower energy (< 4 MeV) neutrons exhibit performance that seems consistent with current transport data.
- High energy (> 4 MeV) neutron attenuation through water with ENDF/B-VIII.1 seems to result in higher reaction rates.
 - This appears to be contrary to what we see in our database of measurement data.

