

Reevaluating the²⁵²Cf(sf) PFNS and associated covariances

Denise Neudecker¹, D. Brown², A.D. Carlson^{2,3}, M.J. Grosskopf¹, R.C. Haight¹, K.J. Kelly¹, B. Pritychenko², S. Vander Wiel¹, N. Walton^{1,4} ¹LANL, ²BNL,³NIST, ⁴UTK

Nuclear Data Week 2024 LA-UR-24-31684 November 6, 24

Managed by Triad National Security, LLC., for the U.S. Department of Energy's NNSA

Why do we care about a new ²⁵²Cf PFNS evaluation?

²⁵²Cf(sf) PFNS is a standard. It cannot be updated since1986 because its input data were lost.

Why is this standard important:

- >70% of all other PFNS measurements (including ^{235,238}U and ²³⁹Pu!) are measured using the ²⁵²Cf PFNS. If its mv or cov are incorrect, we impact PFNS of all actinides.
- New models are often using it as a first test case.
- Dosimetry community uses it to calculate SACS.

Our current standards evaluation by Mannhart is not reproducible because:

- Input data are lost,
- Code is lost (executable exists but no PPP correction).

Impact of not having the data:

- New experimental data (7 sets) have been measured that we cannot add,
- No way to link ²³⁵U PFNS and SACS to ²⁵²Cf(sf) PFNS.

²⁵²Cf(sf) PFNS is a standard. It cannot be updated since **1986 because its input data were lost.**

Why is this standard important:

- >70% of all other PFNS measurements (including ^{235,238}U and ²³⁹Pu!) are measured using the ²⁵²Cf PFNS. If its mv or cov are incorrect, we impact PFNS of all actinides.
- New models are often using it as a first test case. ٠
- Dosin ٠ We render the evaluation reproducible again by:

Our curr

- Reproducing Mannhart's evaluation to the best of our ability. 2) Updating the evaluation with similar code. Input
- Code is lost (executable exists but no PPP correction). ٠

Impact of not having the data:

- New experimental data (7 sets) have been measured that we cannot add, •
- No way to link ²³⁵U PFNS and SACS to ²⁵²Cf(sf) PFNS. •

1) Reproducing Mannhart's evaluation to the best of our ability.

There is a lot we know and a lot we don't know about Mannhart's evaluation, unfortunately.

We know	We don't know
GLS algorithm <i>without PPP correction was</i> used	Prior mean values and covariances (minor)
We read experimental mean values and uncertainties from plots.	We do NOT have experimental correlation coefficients! (major)
How many data points were rejected.	Which exact experimental data points were rejected! (big)
Experimental data were transformed to evaluation grid before evaluation.	We cannot reproduce Mannhart's fit results, there is likely a mistake. (minor)

Mannhart evaluation is well documented in: Mannhart, IAEA-TECDOC-410 (1987).

We can still reproduce Mannhart mv within his evaluated uncertainties, but open questions remain:

Final judgment: We are missing information on exp. correlation (B) and which data were rejected (A) to fully reproduce Mannhart's evaluation, but PPP effect likely small.

2) Updating the evaluation with similar code.

New: Updated database, use IRLS (=GLS with Chiba-Smith correction for PPP), detailed new UQ for all data.

Mannhart standard evaluation

Author & year	EXFOR-number
Dyachenko 1989	41158.003.
Boettger 1990	Not in EXFOR.
Poenitz 1983	14278.002
Blinov 1973	40418.007
Boldemann (Li) 1986	30775.003
Boldemann (Plastic)	30775.002
Maerten 1984	Not in EXFOR.

Proposed input for new standard

Author + Year	New Experiments
Lajtai 1990	Kornilov 2017
Boettger 1990	3xBoytsov 1983 (low energy)
Poenitz 1983	2xChalupka 1990
Blinov 1973	4xBlinov 1980 (low energy extension)
Х	
Boldemann (Plastic)	
Х	2xMaerten 1990

Reason for rejection: Boldeman (Li) data too biased around Li peak. Maerten 1984 used ²⁵²Cf PFNS evaluation to get detector efficiency (circular argument!).

The new evaluation captures the bulk of (a lot of) data.

Blinov data allow us to go down to 0.5 keV (previously 25 keV). The data have a minor contamination due to ⁶Li peak.

New evaluation agrees with Mannhart within uncertainties, but also brings additional benefits.

New AIACHNE experiment aims to further explore correction fact for ⁶Li peak and provide new data.

CoGNAC array used by K. Kelly (LANL).

AIACHNE experiment:

- Uses CoGNAC array (liquid scintillators in upper hemisphere, CLYCs in lower),
- Uses ²⁵²Cf chamber in the middle.
- Detector response is the main challenge: Keegan uses scattering experiments with neutron-producing reactions (¹²C, ¹⁶O, ²⁸Si, ⁹Be).
- Comparison of liquids and CLYCs can help explore potential biases coming from ⁶Li detector response.
- Data taken, analysis ongoing.

Comment: Smoothing of Mannhart data (pointwise versus IRDFF) is quite substantially changing the mean energy.

Thank you for your attention!

Next steps:

- Dave is calculating IRDFF SACs.
- Boris compares to EXFOR SACs.
- Then, we will release to standards.
- AI/ ML guided evaluation factoring in systematic experiment discrepancies in progress.
- AIACHNE experiment analysis in progress.
- Questions? Concerns?

Acknowledgements

Research reported in this publication was supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under the Nuclear Data InterAgency Working Group Research Program.

