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Purpose

Current uncertainty quantification (UQ) methods have known
limitations:

@ inaccurate when model assumptions are violated
@ error corrections depend on subject matter expertise

The nuclear data community needs repeatable, accurate UQ
methods. This first requires a methodology for verifying any given
UQ approach.




Purpose

Current uncertainty quantification (UQ) methods have known
limitations:

@ inaccurate when model assumptions are violated
@ error corrections depend on subject matter expertise

The nuclear data community needs repeatable, accurate UQ
methods. This first requires a methodology for verifying any given
UQ approach.

We propose a methodology which leverages high-fidelity
synthetic data for verifying any candidate UQ approach.
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Syndat: Reproducible Synthetic Data

Walton, Brown, Fritsch, et al. [1] provide

“a generative model for the experimental observables pro-
duced by a determined total cross section in a neutron
time-of-flight (TOF) transmission experiment,”

and accompanying open source code [2].

Brown, et al. Synthesized
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SAMMY UQ Limitations

Updated Users’ Guide to SAMMY, Section IV.E.6:

"The posterior resonance parameter covariance matrix
(RPCM) produced by SAMMY is a accurate representa-
tion of the uncertainties in the R-matrix evaluation. Never-
theless, uncertainties for evaluated cross sections repro-
duced by propagating the RPCM have historically been
regarded as ‘too small." [3]
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Ta-181 Example

Ta-181 Sample
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Ta-181 Example

A SAMMY Fit with Underspecified Model
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Ta-181 Example

A SAMMY Fit with Underspecified Model
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Ta-181 Example

A SAMMY Fit with Underspecified Model
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Ta-181 Example

Cross-section (barns)

16 SAMMY UQ with Underspecified Model

—— Theoretical cross-section
—— SAMMY fit £2 standard errors
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Ta-181 Example

16 UQ with Underspecified Model: SAMMY vs. Empirical

—— Theoretical cross-section
—— Fit £2 standard errors (SAMMY)
Empirical fits

14 1

Cross-section (barns)

50.0 50.5 51.0 51.5 52.0 52.5 53.0
Energy (eV)

THE UNIVERSITY

TENNESSEE




Ta-181 Example

UQ with Underspecified Model: SAMMY vs. Empirical

—— Theoretical cross-section

—— Fit £2 standard errors (SAMMY)
---- Fit 2 standard errors (Empirical)
Empirical fits
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Ta-181 Example

16 UQ with Underspecified Model: SAMMY vs. Empirical

—— Theoretical cross-section

—— Fit £2 standard errors (SAMMY)

---- Fit £2 standard errors (Empirical)
Empirical fits
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Pause and reflect

What have we shown?

@ Use synthetic data to quantify the impact of model assumption
violations on UQ accuracy.
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Pause and reflect

What have we shown?

@ Use synthetic data to quantify the impact of model assumption
violations on UQ accuracy.

What’s next?

@ Use synthetic data to develop a repeatable methodology for
generating verifiably accurate UQ.




Automated Fitting

A sneak peek at AutoFit (see Noah Wal-
ton’s talk tomorrow). ...

@ Dense feature bank of many
resonances

@ lteratively step down model
complexity and fit

@ Use cross-validation to determine
final model

Valuable information for UQ is contained
in higher-order model fits.

Newe =5, Nge = 2
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Automated Fitting

Newe =5, Nge = 2

A sneak peek at AutoFit (see Noah Wal-
ton’s talk tomorrow). . .
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@ Dense feature bank of many "
resonances . C=
@ lteratively step down model N e

complexity and fit

@ Use cross-validation to determine
final model

Valuable information for UQ is contained
in higher-order model fits.

Key idea: SAMMY cross section cov matrices computed for
Syndat samples can be used as features to machine learn
parameters which can be applied to new data for improved UQ.
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Process

Training Data Learn parameters that map SAMMY

k=2 covariances to empirical.
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Process

Training Data Test Data

Learn parameters that map SAMMY
ki=2 covariances to empirical. =4

— Bi10 = argmin(||E — (Bo + B1Cy + - + B1oC10)ll2)

0:10
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CM =_+ _C1 + et _610
We want to improve the UQ accuracy by . ki =13
using information contained in SAMMY 2 3
covariances for the test data. Cioe— =
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Process

Training Data Test Data

Learn parameters that map SAMMY
k=2 covariances to empirical. L =4

— Br10 = al;;gmin(llE = (Bo + B1Cy + -+ B1oCiodll2)

0:10

Cu = Bo + B1Ci + -+ BroCro

Apply learned parameters on user data to
obtain improved UQ.
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Example
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Example

Example: Repeatable and Verifiable UQ Bands
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Example

Example: Repeatable and Verifiable UQ Bands
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Example

Example: Repeatable and Verifiable UQ Bands
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Example
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Example: Repeatable and Verifiable UQ Bands
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Example

Example: Repeatable and Verifiable UQ Bands
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Conclusions

@ A train-then-test process using synthetic data allows us to
verify the performance of any UQ approach.

@ Machine learning methods which combine SAMMY UQ output
from higher-order models may produce more accurate UQ for
cross-sections than standard SAMMY UQ.
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Future work

@ Identify best metric for evaluating a candidate UQ relative to
empirical UQ.

@ Further explore candidate models for improved UQ

@ Develop process for stitching learned UQ across energy
windows
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Questions?

Example: Repeatable and Verifiable UQ Bands
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