A Methodology for Verifiable Uncertainty Quantification

Jacob Forbes, Noah Walton, Oleksii Zivenko, Amanda Lewis, Cole Fritsch, Vlad Sobes

Department of Nuclear Engineering, Tickle College of Engineering

Purpose

Current uncertainty quantification (UQ) methods have known limitations:

- inaccurate when model assumptions are violated
- error corrections depend on subject matter expertise

The nuclear data community needs repeatable, accurate UQ methods. This first requires a methodology for verifying any given UQ approach.

Purpose

Current uncertainty quantification (UQ) methods have known limitations:

- inaccurate when model assumptions are violated
- error corrections depend on subject matter expertise

The nuclear data community needs repeatable, accurate UQ methods. This first requires a methodology for verifying any given UQ approach.

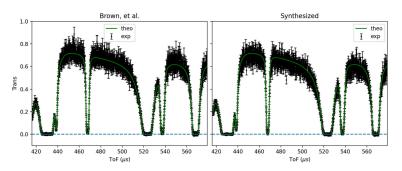
We propose a methodology which leverages high-fidelity synthetic data for verifying any candidate UQ approach.

Syndat: Reproducible Synthetic Data

Walton, Brown, Fritsch, et al. [1] provide

"a generative model for the experimental observables produced by a determined total cross section in a neutron time-of-flight (TOF) transmission experiment,"

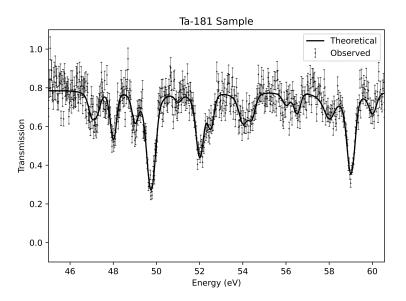
and accompanying open source code [2].

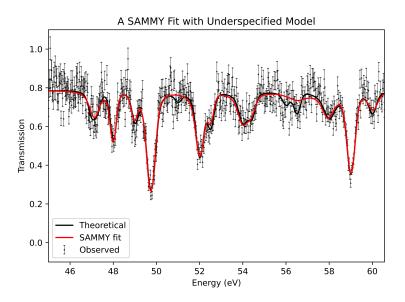


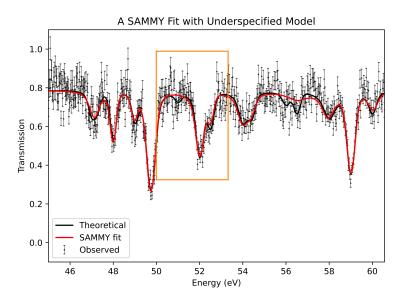
SAMMY UQ Limitations

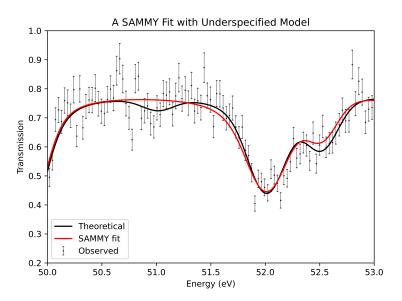
Updated Users' Guide to SAMMY, Section IV.E.6:

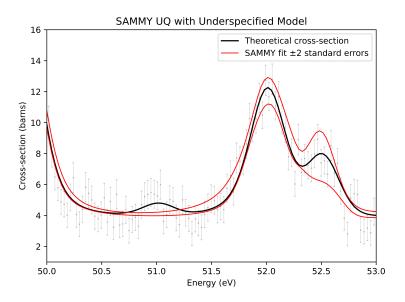
"The posterior resonance parameter covariance matrix (RPCM) produced by SAMMY is a accurate representation of the uncertainties in the R-matrix evaluation. Nevertheless, uncertainties for evaluated cross sections reproduced by propagating the RPCM have historically been regarded as 'too small.'" [3]

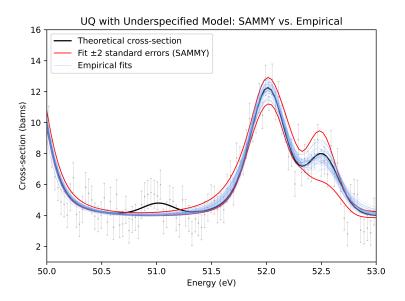




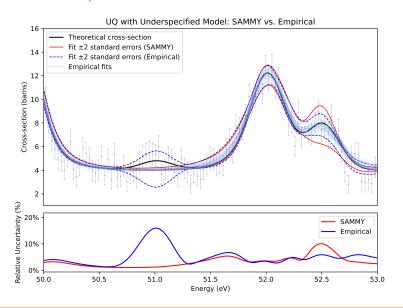












Pause and reflect

What have we shown?

 Use synthetic data to quantify the impact of model assumption violations on UQ accuracy.

Pause and reflect

What have we shown?

 Use synthetic data to quantify the impact of model assumption violations on UQ accuracy.

What's next?

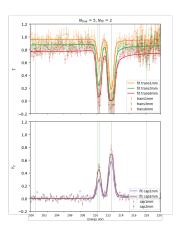
 Use synthetic data to develop a repeatable methodology for generating verifiably accurate UQ.

Automated Fitting

A sneak peek at AutoFit (see Noah Walton's talk tomorrow)...

- Dense feature bank of many resonances
- Iteratively step down model complexity and fit
- Use cross-validation to determine final model

Valuable information for UQ is contained in higher-order model fits.

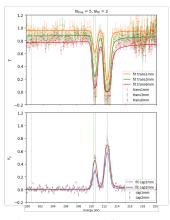


Automated Fitting

A sneak peek at AutoFit (see Noah Walton's talk tomorrow)...

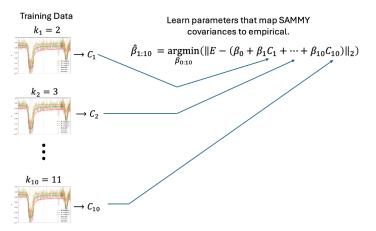
- Dense feature bank of many resonances
- Iteratively step down model complexity and fit
- Use cross-validation to determine final model

Valuable information for UQ is contained in higher-order model fits.



Key idea: SAMMY cross section cov matrices computed for Syndat samples can be used as features to machine learn parameters which can be applied to new data for improved UQ.

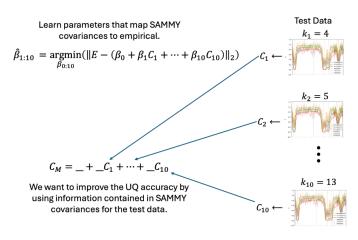
Process



Process

$$k_{10} = 11$$

$$\longrightarrow C_{10}$$



Process

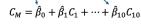
Training Data

$$k_{10} = 11$$

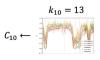
$$\longrightarrow C_{10}$$

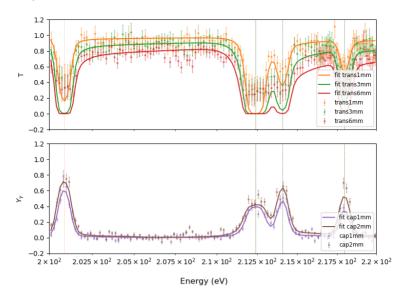
Learn parameters that map SAMMY covariances to empirical.

$$\hat{\beta}_{1:10} = \underset{\beta_{0:10}}{\operatorname{argmin}} (\|E - (\beta_0 + \beta_1 C_1 + \dots + \beta_{10} C_{10})\|_2)$$

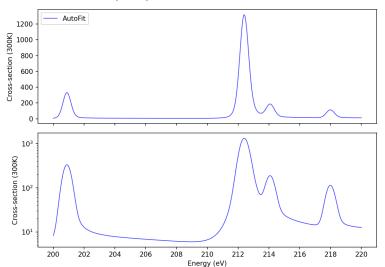


Apply learned parameters on user data to obtain improved UQ.

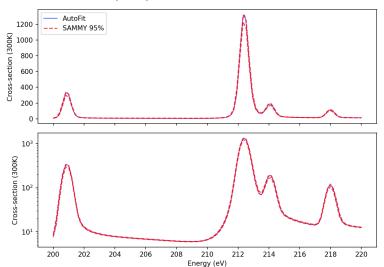




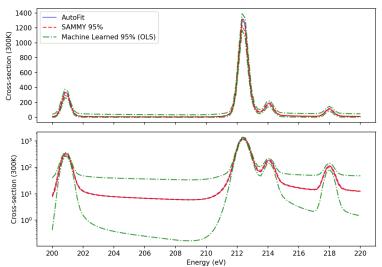
Example: Repeatable and Verifiable UQ Bands



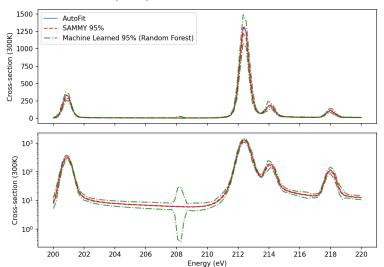
Example: Repeatable and Verifiable UQ Bands



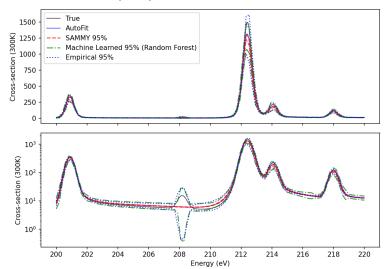
Example: Repeatable and Verifiable UQ Bands



Example: Repeatable and Verifiable UQ Bands



Example: Repeatable and Verifiable UQ Bands



Conclusions

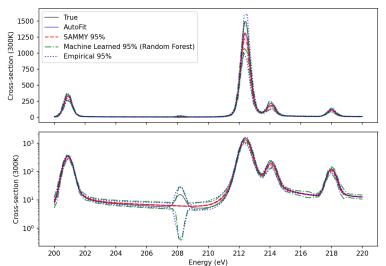
- A train-then-test process using synthetic data allows us to verify the performance of any UQ approach.
- Machine learning methods which combine SAMMY UQ output from higher-order models may produce more accurate UQ for cross-sections than standard SAMMY UQ.

Future work

- Identify best metric for evaluating a candidate UQ relative to empirical UQ.
- Further explore candidate models for improved UQ
- Develop process for stitching learned UQ across energy windows

Questions?

Example: Repeatable and Verifiable UQ Bands



References I

- [1] N. Walton, J. Brown, W. Fritsch, D. Brown, G. Nobre, and V. Sobes, "Methodology for physics-informed generation of synthetic neutron time-of-flight measurement data," *Computer Physics Communications*, vol. 294, p. 108 927, 2024.
- [2] N. Walton, Syndat: Synthetic Data Generation, https://github.com/Naww137/Syndat, 2024.
- [3] N. M. Larson, "Updated users' guide for sammy: Multilevel r-matrix fits to neutron data using bayes' equations," ORNL, ORNL, Oak Ridge, TN, Tech. Rep. ORNL/TM-9179/R8, 2008, Section IV.E.6.