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Purpose

Current uncertainty quantification (UQ) methods have known
limitations:

inaccurate when model assumptions are violated

error corrections depend on subject matter expertise

The nuclear data community needs repeatable, accurate UQ
methods. This first requires a methodology for verifying any given
UQ approach.

We propose a methodology which leverages high-fidelity
synthetic data for verifying any candidate UQ approach.
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Syndat: Reproducible Synthetic Data

Walton, Brown, Fritsch, et al. [1] provide

“a generative model for the experimental observables pro-
duced by a determined total cross section in a neutron
time-of-flight (TOF) transmission experiment,”

and accompanying open source code [2].
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1N. Walton, J. Brown, W. Fritsch, D. Brown, G. Nobre, and V. Sobes, “Methodology for physics-
informed generation of synthetic neutron time-of-flight measurement data,” Computer Physics Com-
munications, vol. 294, p. 108 927, 2024.



SAMMY UQ Limitations

Updated Users’ Guide to SAMMY, Section IV.E.6:

"The posterior resonance parameter covariance matrix
(RPCM) produced by SAMMY is a accurate representa-
tion of the uncertainties in the R-matrix evaluation. Never-
theless, uncertainties for evaluated cross sections repro-
duced by propagating the RPCM have historically been
regarded as ‘too small.’" [3]
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3N. M. Larson, “Updated users’ guide for sammy: Multilevel r-matrix fits to neutron data using bayes’
equations,” ORNL, ORNL, Oak Ridge, TN, Tech. Rep. ORNL/TM-9179/R8, 2008, Section IV.E.6.



Ta-181 Example
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Pause and reflect

What have we shown?

Use synthetic data to quantify the impact of model assumption
violations on UQ accuracy.

What’s next?

Use synthetic data to develop a repeatable methodology for
generating verifiably accurate UQ.
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Automated Fitting

A sneak peek at AutoFit (see Noah Wal-
ton’s talk tomorrow). . .

Dense feature bank of many
resonances

Iteratively step down model
complexity and fit

Use cross-validation to determine
final model

Valuable information for UQ is contained
in higher-order model fits.

Key idea: SAMMY cross section cov matrices computed for
Syndat samples can be used as features to machine learn
parameters which can be applied to new data for improved UQ.
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Process
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Example
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Conclusions

1 A train-then-test process using synthetic data allows us to
verify the performance of any UQ approach.

2 Machine learning methods which combine SAMMY UQ output
from higher-order models may produce more accurate UQ for
cross-sections than standard SAMMY UQ.
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Future work

Identify best metric for evaluating a candidate UQ relative to
empirical UQ.

Further explore candidate models for improved UQ

Develop process for stitching learned UQ across energy
windows
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Questions?
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