

Chlorine at Lujan: Extending the LANSCE Measurements Down to Thermal

Kenneth Hanselman P-3 Nuclear and Particle Physics and Applications khanselman@lanl.gov

Outline:

- Motivation
- Preliminary Experiment
- Analysis & FP Characterization
- <u>Future Work</u>

LA-UR-24-31759

Status of Evaluation after LANL-TP GAIN collaboration

 the LANL-TerraPower evaluation for (n + ³⁵Cl) using the latest data is available by request or on the NNDC GitLab
> covariances for major channels
> direct fitting to fluctuations

Phys. Rev. C 110 024609 (2024)

ongoing data testing:
>> UC Berkeley (J. B. Valentin master's thesis) for MCRE/TP
>> MIT (S. Collins) for fusion neutronics
>> Tyler Nagel (now LANL postdoc) on UCB GENIE data
>> CLYC + ²⁵²Cf source with SULI summer student (I. J. Allen, NCSU)

Motivation for New Experiments

The Low-Energy (n,Z) (LENZ) measurements can be extended down to thermal by running at the Lujan Scattering Center (moderated source of spallation neutrons)

Then energies from thermal up to ~few hundred keV may be probed, particularly in the resonant region where existing differential data are poorly resolved and discrepant \rightarrow important for criticality safety, astrophysics, etc.

Bird's eye view of LANSCE

- Uniquely capable of accelerating H⁺ and H⁻ simultaneously
- Can deliver 100 kW of H⁻ and 800 kW of H⁺ beam
- 120 pulses per second shared among 5 facilities
- H⁻ beam:
 - Lujan Center (NNSA)
 - Weapons Neutron Research Facility (NNSA)
 - Proton Radiography (NNSA)
 - Ultra-Cold Neutron Source (DOE-Office of Science)
- H⁺ beam:
- Isotope Production Facility (DOE-Office of Science)

K. Hanselman – CSFWG 2024

Experiment @ Lujan during Feb 2024

Moderated white neutron source (W spallation)

FP12 @ ~20.8 m

Total of ~4000 uA-hrs

Experimental Details

"Mini-LENZ" Chamber

Three foil targets: NaCl + Au (816 uA-hrs) Au (305 uA-hrs) LiF (158 uA-hrs)

Setup at FP12

0.6" diameter beamspot, fairly uniform

Single Micron S1 DSSD covering backward lab angles ~117-136°

Data processed through CAEN V1730 500 MHz digitizer & COMPASS software

Beam Characterization via Measured ⁶Li(n,t) α

os Alamos

K. Hanselman – CSEWG 2024

PRELIMINARY Yield Spectra for NaCl & Au

NaCl on Au backing | ~10 hrs @ 80 uA Au backing only | ~4 hrs @ 80 uA

(planning for a lighter backing for next run, e.g. Al)

- identifiable resonances, plus some not in current evaluation (~140 keV)
- good coverage up into WNR overlap region
- HOWEVER, statistics an issue for quantitative analysis

LOS Alamos

K. Hanselman – CSEWG 2024

PRELIMINARY Quantitative Comparisons

Can at least compare quantities for strongest resonances:

 \rightarrow resonance strengths: (ωγ) = 2*Area/ λ^2 (see e.g. Druyts *et al.* NP **A573** (1994) 291-305)

From literature (relative to thermal value of 440(10) mb), in meV:

Ref.	400 eV	4250 eV
P. Koehler (1991)	9	32
Popov (1961)	6.5(21)	23(12)
Gledenov (1989)	9.7(14)	36(07)
Druyts (1994)	7.9(04)	38(03)
Mughabghab (1981)	7.1	14.4

Relative normalization factors (arb \rightarrow barns) using thermal region vs the above (after background subtraction):

Thermal	400 eV	<u>4250 eV</u>
0.349(94)	0.393(31)	0.390(31)

→ very consistent within uncertainty
→ fast region still under investigation
(efficiency complications due to strength of Lujan gamma flash)

Summary & Future Work

So far, preliminary ³⁵Cl(n,p) data measured at Lujan are promising, but limited.

Still, much has been learned about LENZ + Lujan, enough to begin preparation for next run cycle to optimize the setup:

- New chamber & DAQ under design to maximize solid angle coverage (more detectors at more angles) & minimize efficiency losses
- Flight path characterization continuing through MCNP simulations (J. Svoboda) and measured reference data
- Estimated ~40 days run time for next cycle, including production and reference runs, to populate the low-yield ~10-300 keV region with sufficient statistics (<10% unc. per bin)</p>

THANK YOU

This work benefits from the LANSCE accelerator facility and has been supported by the **U.S. DoE Nuclear Criticality Safety Program (NCSP)**. Funding has also been provided in part by the DoE's **Advanced Simulation and Computing** Program.

Prior funding was provided by the U.S. Department of Energy Office of Nuclear Energy/Gateway for Accelerated Innovation in Nuclear (GAIN) and a Cooperative Research and Development Agreement (CRADA) with TerraPower LLC.

ACKNOWLEDGEMENTS:

P-3: Sean Kuvin, Hye Young Lee, Jack Winkelbauer, Heshani Jayatissa, Panos Gastis (experimental & analysis work)

P-2: Josef Svoboda (MCNP simulations)

Indiana U: Kylie Dickerson & Gabe Munoz (experimental assistance)

NCSU: India Allen (validation & simulation work)

TerraPower: Tommy Cisneros, Matthew Wargon, & Bobbi Riedel (continued collaboration & testing)

