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PNDA for TSLs Validation

1. Inject Pulse of Neutrons
2. Neutrons thermalize
3. Neutrons spatially equilibrate
4. Measure exponential decay in 

fundamental mode.
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Experimental Parameters

 P383 D-T neutron generator
— Maximum yield of 5 x 108 neutrons/s
— Minimum frequency of 150 Hz
— Minimum pulse width of 10 μs

 Four He-3 tubes
— Operated at 1100 V
— 50 ns pulse width

 Time-tagging electronics
— Provides time stamps of detected neutrons, 

generator pulse
— ALMM, CAEN shift register (10 ns resolution)

 Box to limit room return
— Borated high-density polyethylene
— Cadmium lining Figure: AutoCAD rendering of PNDA
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Why PNDA for TSL Validation?

 Does not require fissile material
— Non-nuclear facilities, reduced costs, fewer 

regulations, safer

 Very simple target shapes and compositions
— Reduced uncertainties in benchmarks
— Reduced material costs
— Easy to change temperature

 Only sensitive to absorption and scattering of 
target medium
— Reduces uncertainties from other nuclear 

data and compensating effects
— Tune target size to vary effect of absorption 

vs. scattering

 Well conducted experiments have uncertainties 
of 0.1% - 0.5% Figure: Measurement of Lucite target
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Integral Parameter: α eigenvalue

𝛼𝛼 = 𝑣𝑣Σ𝑎𝑎 + 𝑣𝑣𝐷𝐷0 𝐵𝐵02 − 𝐶𝐶𝐵𝐵04 + ⋯

𝜙𝜙 𝑡𝑡 =  𝜙𝜙0 exp −𝛼𝛼𝛼𝛼 + 𝑅𝑅

Figure: Example of pulsed-die-away curve 
modeled in MCNP

• α: flux decay-time eigenvalue [s-1]
• D0 [cm2s-1] is the asymptotic diffusion 

coefficient 
• C: “cooling coefficient” [cm4s-1] 
• B0

2:  geometric Buckling [cm-2] 
• v thermal neutron velocity (2.2 x 105 cm/s)
• Σa macroscopic absorption cross section [cm-1] 



6
LLNL-PRES-xxxxxx

Benchmarked Targets 

 High density polyethylene (C2H4). 
 Polymethyl  Methacrylate 

(C5H8O2).
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Determining α Eigenvalue
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Case 1 Case 2

Case 3 Case 4

Determining α for HDPE cases
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Case 5 Case 6

Case 7 Case 8

Determining α for PMMA cases
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Benchmarking of PNDA

 MCNP® 6.2.0 Monte Carlo simulation code was used with ENDF/B-VIII.0 nuclear 
data library. 

 The number of particle histories in each MCNP simulation was determined to obtain a 
statistical uncertainty in the calculation that was significantly less than the experimental 
measurement uncertainty. ~1 x 1012 particles.  

 Neutron flux tallied using a track length estimator for four detectors. 3He absorption 
cross section was applied to the tallied neutron flux to calculate the 3He absorption 
reaction rate.

 The methodology used to obtain α was kept the same for both experiment and models 
to avoid unwanted bias.

 The uncertainty in α from simulations was determined by propagating the statistical 
uncertainty in MCNP with the uncertainty in the fit
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 Dimensional uncertainty: 
 Box thickness.
 Box length and width. 
 Cd liner thickness. 
 Target Length.
 Target Diameter.
 Detector Height. 
 Detector radial position.
 Alignment with the source.

 Composition Uncertainty: 
 Target impurities.
 Borated HDPE Box impurities 

Experimental Uncertainty Characterization

 Mass Uncertainty:
 Target density.
 Detector fill density.
 Borated HDPE box 

density.  
 Cd liner density.

 Temperature Uncertainty.
 Detector Efficiency.
 Detector Dead Time.

 Worth Studies:
 Detector internals.
 SHV connectors.
 Source description. 
 Steel rods.
 Al-struct.
 Al-base.
 Trolly.
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Important Considerations for Benchmarking

 Simulations performed with
— Requested dimensions from manufacturer, 

assumed density of 1.18 g/cm3

— Measured dimensions, measured weight, 
measured density

Figure: Variation of bias with measured vs. procured 
dimensions

Figure: Variation of measured vs. procured dimensions
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HDPE Validation

 General trend of increasing bias with smaller sampler size (larger buckling)
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Lucite Results
Polymethyl Methacrylate 
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Questions, Comments, Discussion

 References:
— G. von Dardel and N. G. Sjostrand, "Diffusion Parameters of Thermal Neutrons in 

Water," Physical Review, vol. 96, no. 5, pp. 1245-1249, 1954. 
— J. Holmes, M. Zerkle and D. Heinrichs, "Benchmarking a first-principles thermal 

neutron scattering law for water ice with a diffusion experiment," EPJ Web of 
Conferences, vol. 146, p. 13004, 2017. 

— J. Holmes, M. Zerkle and A. Hawari, "Validation of Thermal Scattering Laws for Light 
Water at Elevated Temperatures with Diffusion Experiments," in PHYSOR 2020: 
Transition to a Scalable Nuclear Future, Cambridge, United Kingdom, 2020.

— D. Siefman, E. Heckmaier, W. Zwyiec, D. Heinrichs, “IER-501 CED-1: Preliminary 
Design of a New Pulsed-Neutron Die-Away Experimental Testbed for Thermal 
Scattering Law Benchmarks (PNDA),” Lawrence Livermore National Laboratory, LLNL-
TR-820718, 2021
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Sensitivity Depends on Target Size

𝐵𝐵02 =
𝜋𝜋

𝐻𝐻 + 2𝛿𝛿

2
+

2.405
𝑅𝑅 + 𝛿𝛿

2

𝛼𝛼 = 𝑣𝑣Σ𝑎𝑎 + 𝑣𝑣𝐷𝐷0 𝐵𝐵02 − 𝐶𝐶𝐵𝐵04

 Small targets (large Bucklings) are more 
sensitive to scattering 

 Large targets (small Bucklings) are more 
sensitive to absorption 

Figure: Buckling vs. cylinder dimensions Figure: α vs. cylinder dimensions

ScatteringAbsorption
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 Dimensional uncertainty: 
 Box thickness.
 Box length and width. 
 Cd liner thickness. 
 Target Length.
 Target Diameter.
 Detector Height. 
 Detector radial position.
 Alignment with the source.

 Composition Uncertainty: 
 Target impurities.
 Borated HDPE Box impurities 

Uncertainty Analysis Characterization  

 Mass Uncertainty:
 Target density.
 Detector fill density.
 Borated HDPE box 

density.  
 Cd liner density.

 Temperature Uncertainty.
 Detector Efficiency.
 Detector Dead Time.

 Worth Studies:
 Detector internals.
 SHV connectors.
 Source description. 
 Steel rods.
 Al-struct.
 Al-base.
 Trolly.
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Sensitivity to TSLs

Figure: α vs. Buckling curve for experimental 
and simulated data

Figure: Bias of simulations without TSLs, with 
ENDF/B-VII.1, and with ENDF/B-VIII.0 TSLs

 Example: Historical water experiment in cylindrical geometry
— A. Bracci & C. Coceva, “The diffusion parameters of thermal neutrons in water.” Il Nuovo 

Cimento, 4 (1956)

LeakageAbsorption
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Algorithm

time

period

 Neutron counts and generator trigger recorded as list mode data

 Few counts per pulse, but many pulses allows to reconstruct die away curve

 Trigger is initiating event, ttrigger

 Sum counts in bins on die away curve as ttag – ttrigger in histogram

Pulse Trigger

counts
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Algorithm: Sum pulse counts to construct curve

+

+
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Decay to Fundamental Mode
Large Cylindrical Sample

Spatial Modes (l,m,n)

r

z
𝜙𝜙 𝑟𝑟,𝜃𝜃, 𝑧𝑧, 𝑡𝑡 = �

𝑙𝑙,𝑚𝑚,𝑛𝑛

𝐶𝐶𝑙𝑙,𝑚𝑚,𝑛𝑛 sin
𝑛𝑛𝑛𝑛
𝐻𝐻
𝑧𝑧 𝐽𝐽𝑙𝑙 𝑎𝑎𝑙𝑙,𝑛𝑛𝑟𝑟 cos 𝑙𝑙𝑙𝑙 exp − 𝑣𝑣Σ𝑎𝑎 + 𝑣𝑣𝐷𝐷0𝐵𝐵𝑛𝑛,𝑚𝑚,𝑙𝑙

2 𝑡𝑡

𝛼𝛼𝑙𝑙,𝑚𝑚,𝑛𝑛

θ
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Decay to Fundamental Mode
Large Cylindrical Sample

Spatial Modes (l,m,n)

r

z
𝜙𝜙 𝑟𝑟, 𝜃𝜃, 𝑧𝑧, 𝑡𝑡 = �

𝑙𝑙,𝑚𝑚,𝑛𝑛

𝐶𝐶𝑙𝑙,𝑚𝑚,𝑛𝑛 sin
𝑛𝑛𝑛𝑛
𝐻𝐻
𝑧𝑧 𝐽𝐽𝑙𝑙 𝑎𝑎𝑙𝑙,𝑛𝑛𝑟𝑟 cos 𝑙𝑙𝑙𝑙 exp − 𝑣𝑣Σ𝑎𝑎 + 𝑣𝑣𝐷𝐷0 𝐵𝐵𝑛𝑛,𝑚𝑚,𝑙𝑙

2 𝑡𝑡

𝛼𝛼𝑙𝑙,𝑚𝑚,𝑛𝑛
Focusing only on modes of Bessel function: θ

Fundamental Mode

r
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