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Outline

 Introduction of CeC at RHIC and Plasma-cascade Amplifier (PCA)
« Status of CeC experiment in recent RHIC runs

« Improvements for better electron beam quality

* Plan for Run 25
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Coherent electron Cooling

All CeC systems are based on the identical principles:
« Hadrons create density modulation (imprint) in the co-propagating electron beam
» Density modulation is amplified using broad-band (microbunching) instability

» Time-of-flight dependence on the hadron’s energy results in energy correction and in the
longitudinal cooling. Transverse cooling is enforced by coupling to the longitudinal degree of
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Plasma-cascade Amplifier (PCA) T TIPS o
..'..- :5".:...' . .: ’ .?:-." .o
« The PCA is based on the plasma-cascade instability (PCI): a parametric ," ',;f’_'.{'"-_{ R ~£ ;’
instability driven by modulation of the beam’s plasma frequency. T LWl ¥e=0 s

* For the CeC experiment, the modulation of the plasma frequency is
realized by varying the clectrons’ spatial density through strong ‘
transverse focusing.

A" +2k24(8) =0

—————————————

|
|
Solenoids et aas |
. AN A— A—
Transverse size Frequency of (Magnets used to a"=kea +ksa ik, _el
of electron beam plasma oscillation focusing electrons) '
14
12
10
8
kﬂ
6
4
2
L? Brookhaven 0o 1 2 3 4 5 4
" Nati Laborat .
B Gain curve for one PCA cell ksc




Timeline of the CeC at RHIC

O 2014-2017: built cryogenic system, SRF accelerator and FEL for CeC experiment

O 2018: started experiment with the FEL-based CeC. It was not completed: 28 mm aperture of the helical
wigglers was insufficient for RHIC with 3.85 GeV/u Au ion beams. We discovered microbunching Plasma
Cascade Instability and developed design of Plasma Cascade Amplifier (PCA) for CeC

O In 2019-2024
0 2019: PCA-based CeC with with 75 mm aperture was built and commissioned.

O 2020: Presence of ion imprint in the electron beam was observed.

O 2021: We observed regular e-cooling in Run 21, but CeC cooling was washed out by large timing jitter
of the seed laser and resulting 0.35% RMS e-beam energy jitter.

O 2022: Plasma Cascade Amplifier (PCA) with tunable high gain was achieved.
O 2023: New laser profile at injector was tested to provide better final temporal distribution uniformity.
O 2023-2024: Established key beam parameters and worked on improving beam quality.

RHIC ion beam
o CeCSRF accelerator
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What has been achieved at CeC experiment at RHIC

v Unique SRF accelerator generating high brightness electron beam, with peak current
reaching 75 A and energy at 14.6 MeV

Precise control of noise in electron beam, comparable to the level of Poisson shot
noise (Run 18-19)

Demonstrated high gain in the amplifier (Run 20, 22)

AN

Observed presence of ion imprint using electron beam’s dipole radiation (Run 20)

Observed recombination of 14.56 MeV elections with 26.5 GeV/ u Au ions (Run 21)
Conventional electron cooling of hadron beam at ion energy of 26.5 GeV/ u (Run 21)

N NI NN

Lorentz factor 28.5 28.5
Repetition frequency, kHz 78.2 78.2

Total bunch charge, nC 1.5 1.5

Slice peak current, A 50 50

Ratio of noise to Poisson limit, in power <100 ~ 10

RMS fractional momentum spread <2x10™* <2x10*

Norm. rms slice emittance, um 1.5 < 1.5 (with 10% halo removed)




Requirements on electron beam uniformity for cooling

3D cooling simulation (SPACE) » Egr;gatur::éﬂigng))de
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Effort to achieve temporal uniformity (Run 23)

3D cooling simulation requires the electron beam to have uniform current distribution (<10% peak-to-peak
variation) as well as good quality over 10 - 15 ps duration or more.

Beam dynamics simulation shows the temporal uniformity can be achieved using modified initial laser pulse shape
with peaks on the sides and dip in the middle.

New laser profile was developed to have intensity/delay control over individual Gaussian beamlets.
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Studies of individual beamlet’s properties (Run 23)

- We measured individual beamlets with same charge p——
(transverse emittances, arrival time, longitudinal energy SIS Imulate easure

spread etc.) and they prove to be very consistent. Charge per bunch, nC

« Measured beam properties agree well with simulation Bunch length, RMS, ps 30.8 31.7-32.4
predictions. Bunch length, FW, ps 119 120-123

*  When c_:ombining 5 l_JeamIets, the relati\_/e §t_rength of laser Final peak current, A 3.0 3.2-34
nggi tlhsalfllc;;[ZZS (gg/i:rjg%#]i’;f 4?3;/’e3§,/:§.nlflcantly weaker LI\llr(r)jrmalized emittance (slice), RMS, 1.0 0.9-1.0

« The transverse alignments of 5 beamlets need to be Beamlets separation, ps 55 54-56

improved (smearing minimized) so that the emittance does
not blow up (measured 10 um norm., slice when they
combined).
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Laser system fixes/upgrades in Run 23-24

1. Detailed investigations after the end of the run revealed that low
power in the three of the five beamlets (beamlets #1,3 and 5)
were not related to the reflectivity of the mirror but to the error in
setting splitters and combiners in the laser trailer. The problem
was fixed as soon as it was found.

2. New fiber amplifier was procured to increase the input pulse
energy from the seed laser (mode locked oscillator) from 2 pJ to
250 pJ. This allowed to set regenerative amplifier to a lower
nominal gain (between 50 dB and 60 dB) and improve pulses-to-
pulse stability below 1% RMS jitter. In Run 24, we measured
improved power jitter (~ 1.7% RMS). Further improvement is
planned during the RHIC shutdown.

3. We started discussions of new IR laser and delivery systems
(likely with fibers) to improve vibrations caused by environments
and improve the transverse stability of delivered laser beam at
cathode. Preliminary plan will be finished in January 2025 and
results will be tested before the start of Run 25.

With courtesy of P. Inacker




New bunching cavity

* New 500 MHz bunching cavity was installed and fully operational in
Run 24 to remove the undesirable time dependent transverse kick
which deteriorates the beam quality.

* Old bunching cavity loaned by UK'’s Daresbury laboratory with strong
transverse fields resulting in 12.5 mrad/MV vertical and 4 mrad/MV
horizontal time-dependent transverse kicks to the electron beam.

a  Initial measurements with the new cavity showed that both transverse
kicks are significantly smaller: ~ 2 mrad/MV vertically and 0.5
mrad/MV horizontally: 6- to 8-fold reduction compared with the old
system.

« Two extra sets of trims around the bunching cavity were installed which
allowed us to control trajectory of the electron beam though the cavity:

both in position and in the angle.
G Brookhaven 1

National Laboratory
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Rigidity of the beam is

Beam alignment through the bunching cavity reduced by 25%

Observation
Cavity P Point:
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» We developed an algorithm to further reduce the time dependent kick
from the bunching cavity by investigating various aspects of beam
trajectory through the bunching cavity: the cavity displacements and
tilts, the beam displacement and angles, asymmetry of the cavity fields
and, finally, chromatic effects and transverse dispersion coming from
stray fields.

« The LEBT1 solenoid, downstream to the bunching cavity, was served as
pickup of the 4D offsets (x.y.x’,y’) of the beam through the cavity. The
response matrix to the beam trajectory through the cavity can then be
measured by changing positions (x and y) and angles (x’,y’) in the
bunching cavity.

» Using measured response matrix, we reduced the time dependent kicks
by additional 2 - 3 fold. Less improvements observed in horizontal
plane, which is likely caused by the defect in one of FPCs resulted in
left-right asymmetry. Such asymmetry in field cannot be fully
compensated by just orbit adjustments.
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Correcting beam trajectory in injector solenoid (Run 24)

« The first injector solenoid’s field axis, due to space limit, has very large angles — 14 mrad in X, 7 mrad iny versus
the SRF gun’s field axis. This causes severe beam distortion and beam quality degradation.

» Using larger (14 mm in diameter as comparing to 10 mm in earlier Runs) photocathode allowed us to adjust laser
spot position by 3.35 mm horizontally and 1.45 mm vertically, which puts electron beam closer to the axis of the
gun solenoid.

» Projected geometric emittance improves from 0.7-0.8 um to ~ 0.5 um with nominal set up.

No alignment After alignment

cs2-inj.yagl-cam.-125209

Photocathode in the preparation Laser spot shifted from the
chamber 3.35 mm horizontally and

: E-beam profiles at first CeC
k? Brookhaven 1.45 mm vertically

i : 13
profile monitor

National Laboratory




Measured beam quality in Run 24

* One of the main goals in Run 24 was to demonstrate the key beam parameters needed for cooling demonstration.

« Beam parameters measured in Run 24:
v" Bunches with semi-flat peak-current: ~30 psec with 60% of charge
v" Flat energy profile for the core of the beam
v" Slice energy spread ~ 2 x 10™*

Projected normalized emittance less than 2 mm mrad

« We will continue improving lattice to complete demonstration of required beam parameters including the time-
resolved slice emittance measurements.

Figure 2 (on cscomputeQl.pbn.bnl.gov)
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Interruptions in operation in Run 24

» Over the course of continuing operation of the

SRF gun, we observed continuous increase in the | | | |

radiation around the gun as We” as increase Ievel 21500 ..................... Y TR ...................... P T TP R TR PE PRI FRERTRPRPPNT .

of dark current. ool o AT |, 1 . T S & B
 Gun conditioning were needed to clean up the gun S sollll A1 AT AT | . [T | || -

before it could be brought back to normal :

operation. This caused several interruptions in the bhay aun ul Aug Sep ot

beam operation and loss of time. et sekotin 1
« Such behavior existed in previous years of gm

Opel’atIOH Wlth the SRF gun- -‘ESOOO PP SRR SORPIPTT
. This is likely caused by evaporation of the Cs E ____________________ e M ____________________ ______________________ S — |

from the CsK,Sn photocathodes. Hence, we plan g ‘ Lﬂ_

to switch to NaKSb photocathodes for the Run 25, s | .l -

with Na having significantly higher evaporation e o A S e ot

M, 332 doseRatetl (D)

temperature.
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Summary of Run 24

« We managed to achieve several important milestones in Run 24 during the limited time of
operation:

1. The new 500 MHz cavity with significantly weaker transverse kicks is fully operational
and we developed algorithm to further reduce the time dependent transverse kicks by 2-
3 folds.

2. Key beam parameters needed for cooling demonstration were measured close to
specifications.

 We did not manage to measure all needed beam parameters for cooling demonstration
simultaneously or re-establish the high gain amplification in the PCA in Run 24 due to
several delays in key beamline component (500 MHz cavity) and interruptions:

1. Delay in delivery of the new 500 MHz cavity as well as its faulty FPC caused three
months delay in start of the CeC operation.

2. Increase of radiation and dark current as well as contamination of the gun from the
overheating of cathode by failure of end-effector interrupted the operation several
times. Multiple times of He conditioning as well as one cavity warm-up were
performed to restore normal operation of the SRF gun.

16



Major remaining challenges

Improve laser system to have better stability in power for stable CeC operation. In Run 24 the
best measured laser power jitter was ~ 1.7% RMS and normally went up to about 2 — 3% RMS
during 8 hour shift. The power jitter causes significant variation in space-charge dominated
dynamics of the electron beam and should be eliminated for reliable measurements and
demonstration of CeC.

Improve transverse stability of the beam. Various sources of the vibration that causes laser
motion have been identified and plans have been made to fix the undesirable large transverse
motion in the electron beam.

Improve transverse uniformity of beam generated at the photocathode (QE and laser profile).
The non-uniformity results in violation of axial symmetry, filamentation of beam and
generation of halo — degradation of beam quality.

New NaKSb cathode for more machine up time.

17



Task
Laser: 1% RMS power jitter
Laser: Pulse measurements at gun table

CeC work during shutdown 24

Laser: Position stabilization

Laser: Measure time jitter of the laser pulses

NaKSb photocathodes for next run
Investigate CsK ,Sb cathodes removed from gun

1. In addition to the major challenges, we plan to fix few remaining minor
problems as well as check alignment of the CeC system during RHIC
shutdown.

Fix illumination and focus of all profile monitors
Fix cables for 2 profile monitors that are none responsive
Add "external” synch for Gun2 camera

2. We plan to explore an alternative mode of CeC operation with relaxed ~— 10 [Examine lasercross

beam requirements. Such mode would have further advantages: _
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. . 20 LLRF system to operate SRF gun at h+1=1447 harmonic of RHIC operating with 18.196
beg inni ng Of nEXt run. GeV/u Au ion beam. Change of bunching cavity and SRF linac harmonics as well.
. . 21 Check operation of all IR diagnostics
4. Various shutdown items have been completed. 22 |Compton polarimeter
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Modes of operation

O  New operation mode with hadron energy below transition was recently proposed.

O  Lower energy of operation would provide for better quality hadron beam and relax the parameters of the electron beam. All needed
simulations are taking place and will be finished before the start of the Run 25.

O  Best mode will be selected for the cooling demonstration
QO  The required beam parameters will be demonstrated before June 2025.

Old mode

Lorentz factor 19.57 28.5

Au ion beam energy, GeV/u 18.2 26.5

Electron beam energy, MeV 10 14.56

Peak current, A (core) | =22 50 |
Norm. rms slice emittance, um (core) <15 1.5

RMS relative energy spread (core) <2x107* <2 x107*

Energy flat top (core) <1.5x107* <1.5x107%

We have started beam dynamics simulation to optimize settings for this new mode. Preliminary results show
reaching proposed beam parameters is easier. Optimization is on-going for better results. 19




Preliminary beam dynamics simulation for new mode of operation
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» Preliminary simulation shows peak current for compressed beam reaching 22 A with peak-to-
peak 10% variation has duration longer than 15 ps.

* Normalized slice emittance for core < 1.5 um.
« On-going optimization for better uniformity in average energy between slices.




CeC Plans for Run 25

Plans towards demonstration of CeC:

1. During RHIC physics run we will bring all CeC systems to full readiness and
establish required electron beam parameters for cooling and achieve required
stability (April-June, 2025).

2. We will use APEX time through Run-25 to accomplish preparational tasks prior
to use of dedicated time (June-August, 2025).

3. Two weeks of dedicated time at the end of the run are requested to accomplish
CeC cooling demonstration:

- Match relativistic factors of ion and electron beams — 1 day
- Restore High-Gain Plasma-Cascade amplification with CW e-beam — 3 days
- Fine system tuning and demonstration of Coherent electron Cooling — 10 days

21



Summary

>

>

Over the course of the years in operation, the CeC X has achieved several key milestones (low beam
noise, high gain amplifier etc) along the road to final cooling demonstration.

Recent efforts have been put in achieving better uniformities in the beam properties and
elimination/compensation of all undesirable time-dependent kicks from cavities. We saw improved beam
guality after several major beamline upgrades. The key beam parameters (except slice emittance) required
by cooling demonstration were measured in experiments.

The CeC accelerator still suffers from lack of reliability: both in terms of beam parameter jitter and poor
repeatably of operation set-ups. This is our major challenge to overcome in the beginning of Run 25.

New operation mode for CeC accelerator with 10 MeV electron beam has been proposed to relax the
electron beam requirements for observing cooling. Beam dynamics and cooling simulations for the new
mode are underway.

We are aiming to demonstrate longitudinal Coherent electron Cooling in Run 25.

22



Backup slides
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New “tractor” system for cathode
tran sf_er

We build-up at SBU a new system — called a tractor — which provide a slow and steady insertion of the cathode in the
long arm of the SRF gun cathode transfer system. The role of this device is to reduce outgassing and vacuum pressure
spikes during cathode transfer. This devise was successfully tested this month.

24
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Emittances as beam intensity for Au beam in RHIC

Transverse Emittancesvs. Intensity with 2-1 Merge
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Run 22: Demonstration of
Plasma Cascade Amplifier (PCA)
gain at high frequencies

1 After establishing electron beam parameters sufficient for high
PCA gain, we made several unsuccessful attempts to
demonstrate high PCA gain. For long time maximum observed
PCA gain was ~ 5.

d Main problem was related to increasing beam losses with
solenoid’s currents approaching the designed strength for PCA
lattice. It is likely related to increased halo in electron beam.

O First promising signs of hi%h PCA gain were observed during
night shift on April 16, 202

4 Finalli/, hizgh PCA gain was demonstrated during night shift on
April 17, 2022

I k? Brookhaven
National Laboratory



RHow PCA gain IS
m&@% rlégia[iogro t;abending magnet at the exit of

the CeC section. Critical frequency of synchrotron radiation
from the bending magnet is 1.3 THz

» PCA gain peaks at 15 THz and there is no gain below 4 THz

A\

IR radiation is intercepted by 2" mirror 10 meters downstream

> For there measurements, the radiation was delivered to two
most sensitive IR detectors: broad-band Golay cell or cryo-
cooled Bolometer.

> IR filter with passband of 3.5-10 THz was used in front of the
Gl_odla)y cell to improve sensitivity at high frequencies (see next
slide

» Signal from Golay cell was detected by lock-in amplifier
synched with the electron bunch pattern (typically 5 Hz, five
100 msec bunch trains per second). We used high order
modulation-demodulation (MDM) technique to remove
background unrelated to IR radiation, by periodically blocking
IR using Mirror 1.

)

» Signal from Bolometer was delivered in unsynchronous mode
(140 kilo-samples per second) with respect to electron beam &
pattern. Analog signal was not available. We developed o ¥Golay cell
MatLab application for asynchronous detection of this digital [ “0 =8
pattern. E S

\@ IR filter

» PCA gain was evaluated by comparing radiated power in the i A— U — 7 P\ 1

PCA lattice (strong solenoids) with relaxed lattice (weak
solenoids) using the same setting of the CeC acceleratorand -—————== 8
the electron beam
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Golay cell

measurement .\
PCA/Relaxed=65 —

PCA lattice

In-phase (cos)
signal

90°-phase (sin)
signal

Relaxed lattice

File Edit Wiew Insert Tools Desktop Window Help ~ ||| File Edit wiew Insert Tools Desktop Window Help ~
| Gain | sensitiity [Time Constant|input Range [ Emr | Gun | Buncher |  Linac | gain [ Sensitwty [Time constant|Input Range [ teser | Gun | Buncher [ tinac |
Upstream |1 1V 35 1v valtage, kv Mah 1165 185 12820 This is Upstream |1 1V 35 1v Voltage, kv Mah 1165 185 12820 This is
Downstream |10 1 35 1V Phase, deg | -0.7000 0 11,6000 -188.0003| IR_Measure Downstream |10 1y 3s 1V Phase, deg | -0.7000 0 116000  -188.0003) IR Measure
[ Monochromator| Detector | Grating | Wawelength, nm | [Delay, sec| Mscan | Neycles [T percycle, sec[ dt sec | M | Monochromator| Detector | Grating | wavelength, nm | | Delay. sec| Mscan | Wcycles [T percycle, sec| it sec | MoasirS
ByPassed GolayFilter 1-Grating 1.8000e+04 \ 50 1 8 200 1 _Measure | [ByPassed GolayFilter 1-Grating 1.8000e+04] \ 50 1 8 200 1 _Measure |
Q. nc | Up =x=p=q=, wiC | Up =¥r=0> WC | Up <Re/=Q=, V/C |Down ==f<0=, V/C |Down <¥=/=<Q-, V/C | Down <R=/=Q=, W/C Q. nc | Up <xer=0m W | Up =vef=0m WiC | Up <Rev=0=, WC | Down <Xe/=<0>, W/C | Down <v=/=<Qx, WiC [ Down <R=/=Qx, WC
IR On, Avg 6.10408+04 3.4041 0.5323 3.6860 13.6543 25912 13.9082 IR On, fvg 61257e+04 32193 0.598% 35681 03833 -0.2259 0.6402
IR On, Err 97.9296 02338 01110 02230 03908 0.0861 0.3881 IR On, Err 98.8200 0.0943 0.16682 0.0858 0.0731 0.0732 0.0488
IR Off, Avg 5.0963e+04 1.1199 0.4528 1.9644 09385 0.16872 1.0303 IR Off, Avg 5.1185e+04 1.044g 0.2063 1.7672 0.1890 -0.1495 0.6197
IR Off, Err 98.8656 0.1257 0.1885 0.0977 0.0691 0.0450 0.0577 IR Off, Err 67.5411 01218 0.1129 0.1008 0.0850 0.0526
Diff, Awg 76.7181 22843 0.0797 17216 P'¢ = pyy) By i EXanind G 3= -0.0763 0.0205
Diff, Err 173.65560 01759 02510 01834 N 0.0808 0.4254 Diff, Err 104.45650 0.1826 02171 0.1547 0.0930 Q.0777
Scan Done Scan Done
Done Done Done
6.3 6.16 6.3 6.18 (1
—c—IR On
o) Te.14 5 D616 —e—IRof
£ £ £, £
L L' o L
& Be.12 & B 6.14:
o I 2 H
= S 61 Sea 5 612
& & B B
) IR On 26.08 2 g Gl
IR Off 5 |
X 6.06 6.08
0 20 40 60 80 100 2 3 4 5 3 7 [ 0 20 40 60 80 100 3 4 5 6 7 8
time (s) N Cycle time (s) N Cycle
3 4 5 £
o o o o
= 0.8 > g g x 4 = X 0.6 s 0
£ £ 10 -1 £ - £
06 5 £ G 2 s £ e
g 2 5 3 £ 2o 5} 9
2 2t £ = 7 g g4 5
€ 0.4 c 7} @ E O € 2 2 0.4
= H € 5 10 = H E €
3 H § £ 2 H £ g
Q.2 g 8 5 Q-2 & 8 806
2 [CPRS - 5
o o 3 4 0 0.8
0 50 100 0 50 100 0 2 4 [3 8 0 2 4 3 8 0 50 100 0 50 100 0 2 4 6 E] 0 2 4 3 8
time (s) time (s) N Cycle N Cycle time (5) time (3) N Cycle N Cycle
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measurement*

PCA/Relaxed: e —
100 +/- 20 average, 300 +/- 50 SAALLD

yonen

]

PCA |atticp e ak Relaxed lattice i

[ ms/Ce terProcess.logr e [ 2ms/Ce Y ce rProcess.logr (sl =T]
File window Markers Analysis File Window Markers Analysis

1.4E-10

15E8 ‘ With'IR radiation

1669

With IR radiation

13E-10
1.9E-9

: ; i A
| Hr’ m ”' Il l” Il ﬂ

1.0E-10
4.0E-10
20610 Background: signal
st Ay v o et 9.0E-11 B
0.0E0 k d 3] I
Backgr signa
22:09:00 22:10:00 22:11:00 22:12:00 22:13:00 22:14:00 22:15:00 22:16:00 22:17:00 22:18:00 22:22:00 22:23:00 22:24:00 22:25:00 22:26:00 22:27:00 22:28:00 22:29:00
Time (Start Fill = 33310) Time (Start Fill = 33310)
= boloneterProcesstanplitudel ——— 1,0615%-10 — 7.72954e-10 1,61724e-11 — 1.114Ze-10 ——— 1,04631e-10 ———  bolometerPracesst amplitudel ————  1,0B153e-10 ———  7.72954e-10 1,51724e-11 — 1,1142-10 —— 1,04691e-10
3| 5|
Time = Sun Apr 17 22:15:52 2022+0us, holometerProcess:amplitudeM = 1.63756900632784e-09 J Time = Sun Apr 17 22:15:52 2022+0us, =14 8de-09 J
Time = Sun Apr 17 22:09:05 2022+0us, bol terP) =128 10 vl Time = Sun Apr 17 22:09:05 2022+0us, = 1.287: 10
i

* Important note. by unknow reason, the bolometer “detects” beam pattern delivered to the heavily shielded high
power dump with signal proportional to the beam intensity. Itis not related to X-ray, because intercepting beam in
front of the beam dump increasing radiation but eliminates the signal (it is possible to do only in low power mode,
unsuitable for PCA measurement s). This background signal is is measured by blocking IR radiation using Mirror 1 —
then is it subtracted from the signal measured in the presence of IR radiation
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Expectations:
Golay cell with IR A\
v f\l/!te@u';ted spectrum of 3.::THz GTT-T‘z“ 9;;I;Hz 12 THe

radiation from the edge of the
bending magnet using well-
benched code Igor-Pro

v" For expected PCA gain we used
our 3D simulations with SPACE Power spectrjm « Power gai
code using uniform electron beam o Playing with power
with 50 A peak current and 1.25 . e s 016 j '
um normalized emittance

Power with fllt+r o Amplified

Bending
magnet+ 1
11210 ozl filter . g

- 9000 l

- 6000
Expectede
PCA
Pewer-- 3000
gain

0.8

v" Product of radiation power and the
IR filter transmission is used and
the base for the relaxed lattice (red
curve in the right graph)

v' This power amplified by PCA 02
peaks at about 6.5 THz, just in the
middle of the IR filter transition ° 5 10 15 0
window i

0.08 by PCA

uieb Jamog

04l

Power spectrum
Power with filter

(Y| I Y 51 S W ——

f.THz

v For 50 Ain 50% of the beam, Power integrals: Relaxed: 0.2007;
expected PCA/relaxed power ratio Amplified : 23.84

is 60, which compares favorably Expected PCA/relaxed power ratio: forl00% of the beam is 119
with measured value of 65 for 50% of the beam is 60
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Bolometer Results
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The bolometer manual specifies the sensitivity range from 6 THz
to 60 THz, but there is no calibrated spectral response. Most of
the PCA amplified power is concentrated around 6.5 THz and
knowledge of the spectral response is important. Hence, accurate
comparison with estimations is not possible at this moment.

Simple estimation by integrating simulated powers for relaxed and
PCA case above 6 THz, gives PCA/relaxed power ratio of 1,070 if
100% of the beam has peak current of 50 A and normalized
emittance of 1.25 um

In this assumption, the measured average value for PCA/Relaxed
~100 and peak ~ 300, would indicate that

v' Either peak current ~ 50A exists in 10% to 30% of the beam

v' Orthat amplitude PCA gain is 45% in average peaking at 75% (assuming that
50% of electron satisfy PCA gain condition of peak current above 50A), when
compared with simulated values

It is important to note that PCA gain changes dramatically both on
the fast (1/3 kHz) and slow (1 sec) time scales, as indicated by the
sample of the bolometer signal. It is our understanding that it is
result of jitter in electron beam parameters, including on bunch to
bunch (78 kHz) scale

Power spectrum

Playing with power
T T 31510

41218

Power integrals above 6 THz
Relaxed: 0.0206;
Amplified : 22.08

This is problem related to variation of e-beam parameters (quality)
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Run 18-19: control of the noise in electron beam

Run 18 lattice and beam: 0.6 nC per bunch

Large signal of 2,500 /A ~ 250-fold above base 10000
line. Can be seen both on scope and measured easily . -
e - —E, V/|_A Poisson statistical shot
[ 1000 aseling noise was established
with the radiation
< power simulated by
> 100 Igor Pro (SRW)
=
N\
L soonto’ | |
10 |\
\7 0] \\
g | \
‘ 1 \
: 170 180 190 200 210 220 230 \\
— Bunchi Itage, kV T — T
15nC, 75 A peak current Hening YoTege, =
LEBTS scan —R, V/A
7000 —Baseling 200 >
500 200 LEBTS scan ——R.V/A .
i —Baseline e
5000 Coollng 150 » , |
150 .
< 4000 } < 3o
~
> < > 100
o 3000 S o
2000 e o 0§ W
. 50 Horawaa Posicn
1000
0 s 0
5 45 wg 25 -2 0 1 .5 2 2.5
-4 -3.9-3.8-3.7-3.6-3.5-3.4-3.3-3.2 )
LEBTS, A LEBTS. A LEBT1 solenoid current, A

We demonstrated that with 75 A peak current we can reduce beam noise to
acceptable level. It could be as low as 6-10 times above the baseline
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Simulation results of the PCI in CeC accelerator using Impact T
for standard (Run 18) lattice (blue) and new relaxed lattice (red)

FTT power spectra Radiation power spectra
1000 12000

—Radiation, norm
—Radiaon, relaxed [

800

600

FTT, Power

400

Radiation power, a.1.

200

E

I ' “ﬂ .||‘I bl L 0 L

0 5 10 15 20 25
f THz

FTT and Radiation spectrum of the compressed 0.7 nC electron bunch profile at the exit of the SRF linac simulated by Impact-T. Blue
color lines is for standard CeC lattice used during RHIC Run 18. Red color lines are for a new designed lattice of the CeC accelerator.
Horizontal axis is the frequency measured in THz. The simulation was performed for 1.25 MV SRF gun voltage, standard bunching
cavity voltages for 20-fold compression The relaxed LEBT lattice has following currents in six LEBT solenoids: 7.83 A, -2 A, 2 A, -2 A,

2A,-2A

0

f, THz

« Simulations show suppression of the PCI at frequencies ~ 10 THz down to the noise floor (defined by
the code). The low frequency structures represent that of the compressed electron bunch. Red color
spikes near 15 and 20 THz are computing artifacts related to the mesh and time step.

* In Run 20, measurements show that the e-beam noise in the 1.5 nC beam is from 2 to 5 times higher

than the baseline (Poisson statistical shot noise).
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Recombination of electrons with Au ions: Run 21

Experiment

Resolution

AE/E=+0.02

a4 I

m /r FWHM. 4%

Recombination rate above reference bunch

AE/E=-0.02

10

0
12600 12700 12800 12900 13000 13100 13200 13300 13400 13500

Linac Voltage (KV)

Triangular shape of the measured dependence allows
to define matching of the relativistic factors with
accuracy ~ 0.2%, which is significantly smaller than
4% FWHM.

This finding will reduce the range where we need to
search for the CeC signature by 5-to-10 fold.

Experiment vs Calculations

Analytfcal fitting

AExperiment data 4

o ot
© [t}
T T

Normalized recombination rate
o
~

06F
05t
0.4 : ‘ : ‘ :
0.02 0.01 0 0.01 0.02
(E-Eo)/Eg
2 rr, . r
j dvd®v, f, (v,) f, (v )|V, —vi| o (Ve —vi|)
o ==

J'd:’vid3ve f(v.) fi (v)

: PR AN MU
el j’{( 27 )}
T e

This results include convolution of the exact
formula recombination cross-section (in the
commoving frame) with distributions of two beams

© G. Wang

35



Comparing measurements with expectations

d Golay cell + IR filter measurements resulted In

the average increase of IR power by factor 65
with PCA Tattice Bolometer 1
« With 50% of electron bunch satisfying PCA condition mes] - signal
(peak gain of 100 at 15 THz), expected increase of the : /.
measured IR power is 60 Peak Sk

0,000000012

O Cryo-cooled bolometer measurements resulted in ...
100+20 averagﬁ and 300+50 peak increase of IR ...  Fitted amplitude

N

power caused by PCA lattice |

* The bolometer manual specifies the sensitivity range SO NS IS o
from 6 THz to 60 THz, but absence of calibrated spectral "™ j. ; . .} . '
response does not allow accurate comparison 100 10 = 120 LA

» Very crude estimation (using a step-function response in T A
6 to 60 THZ) ShOWS tha‘t Wlt 50% Of electron bunCh 2.3?188&—2?exp(0:34278?}(%3‘?48883-10 ?‘?28182—24ex2(02880%5)(%2‘30814&—08
satisfying PCA, expected increase of the measured IR Exponential growth of the IR signal at the
power Is 535 bolometer as function of current in PCA

1 Both results are in reasonable agreement with solenoids: e-fold increase each 3 A (2.4%)

our expectations

0000006034
0000006033
éé 0000005032
& 0000008031
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Upgrade of CeC 113 MHz SRF gun vacuum
and He conditioning systems

Upgrade includes new high speed NEG pumps and new
ion vacuum pumps at the cathode stalk and in the front of
the gun aimed to an order of magnitude improvement of
vacuum at the cathode location. In addition, two high
compression ratio turbo-pumps will improve evacuation of
He and other inertial gases from the gun system.

In progress Completed |

NEG Zao-2000 L/s cartridges

L? Brookhaven

+" National Laboratory

37



Energy kick
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Preliminary cooling simulation for new CeC mode

%107®
1t

z (m)

Old mode

m— x=0 m

m x=0.0001 M
x=0.0002 m

m— x=0.0003 M

s ¥=0.0004 M
x=0.0005 m

m— x=0.0006 M

m | = x—0.0007 m

m= x=0.0008 m
x=0.0009 m
= x=0.001 m

%107

Energy kick

m— x=0 m
m x=0.0001 M
x=0.0002 m
m— x=0.0003 M
s ¥=0.0004 M
x=0.0005 m
m— x=0.0006 M
m X=0.0007 M
m x=0.0008 M
x=0.0009 m
m x=0.001 m

z (m)

New mode

Preliminary cooling simulation shows the newly proposed mode of operation

has similar cooling force comparing with the old mode.
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