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Responses to the last MAC
Recommendation 7 (ML for beam polarization increase (FOA)):
Include at least the first-order effect of field overlap between nearby magnets (change in effective magnet field length) in the 
model.

è We have analyzed orbit responses to corrector changes in the Booster and subjected them to Uncertainty Quantification by 
Bayesian analysis. This showed that an effective magnet length error common to all quadrupoles cannot be identified as 
responsible for discrepancies between measurement and simulation. We are continuing the UQ to identify the source of 
the Booster’s orbit responses.

For this MAC we focus on
ii) the plans to for maintaining and upgrading the hadron injector complex for EIC, and (iii) the presented R&D efforts.

Bayesian UQ Bayesian UQ
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Responses to the last MAC
Recommendation 8 (ML for luminosity maximization, FOA with PI Xiofeng Gu):
Pay more attention to the results of the optimization runs in order to gain insight of the process as well as better characterize 
the system being optimized (sPHENIX luminosity, or EBIS as the case may be).

è The GPTune optimization framework was integrated into the control software and experimental measurement loop, which was 
successfully tested during the first Accelerator Physics Experiments (APEX) session. Exactly following the recommendation, during this 
optimization process, it was observed that the s* control algorithm required adjustments. A new s* control method was developed, and a 
detailed description is being prepared for publication in a journal paper.

Meanwhile, the global accelerator parameters (beam losses and orbit for example) were well maintained during the APEX session. 
An observed tune variations of 0.005 can be controlled with tune feedback. The system is available for s* optimization as needed.
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DE-FOA-0002875 : ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR 
AUTONOMOUS OPTIMIZATION AND CONTROL OF ACCELERATORS AND DETECTORS 

Title: Beam polarization increase in the BNL hadron injectors through physics-informed Bayesian Learning

Collaborators: BNL, Cornell, SLAC, JLAB, RPI

Budget: $1.5M, 09/01/2023 to 8/31/2025

Funding through DOE-NP DE SC-0024287, contr.# 2023-BNL-AD060-FUND

Funding officer Manouchehr Farkhondeh

FOA requested topic:

• Address the challenges of autonomous control and experimentation

• Efficiency of operation of accelerators and scientific instruments

New NOFO (DE-FOA-0003458, Artificial Intelligence and Machine Learning Applied to Nuclear Science and Technology) 
for a continuation proposal.
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Desired result: higher proton polarization
• What high-impact operational challenge can be addressed by MI/AI? è Polarized protons.

• From the source to high energy RHIC experiments, more than 20% polarization is lost.

• The EIC asks for 70% proton polarization, which is 5% higher than even a good RHIC run.

• Polarized luminosity for longitudinal collisions scales with P4, i.e., a factor of 2 reduction!

• The proton polarization chain depends on many delicate accelerator settings form Linac to 
the Booster, the AGS, and the RHIC ramp.

• Even 5% more polarization would be a significant achievement.

• Approximately 2/3 of the polarization loss is in the injector chain.

• Accelerator time in RHIC is much less available than in the injector chain.

è Focus: polarization increase from the injector chain. 
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The polarized proton accelerator chain

RHIC, later HSR
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RHIC Polarized Beam Complex
Max tot. 
Energy
[GeV]

Pol. At Max 
Energy [%]

Polarimeter

Source+Linac 1.1 82-84

Booster 2.5 ~80-84

AGS 23.8 67-70 p-Carbon

RHIC 255 55-60 Jet, full store avg*

Relative Ramp 
Polarization Loss
 (Run 17, full run avg)

AGS 17 % 
RHIC 8 %

* Includes both ramp loss and store decay

PHENIX

AGS

LINAC BOOSTER

Pol. H- Source
200 MeV Polarimeter

Helical Partial 
Siberian Snake

Spin Rotators
(longitudinal polarization)

2 Siberian Snakes/ring

Spin Rotators
(longitudinal polarization)

Strong AGS Snake

RHIC pC PolarimetersAbsolute Polarimeter (H jet)

STAR

AGS Polarimeter

Spin flipper
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Topics that can improve polarization
• (1) Emittance reduction

• (2) More accurate timing of tune jumps

• (3) Reduction of resonance driving terms
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Optimizers for different applications

Courtesy Auralee Edelen 
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Characteristics of polarization optimizations
1. Optimal parameter settings are hard to find, and the optimum is difficult to 

maintain.

2. The data to optimize on has significant uncertainties.

3. Good, approximate models of the accelerator exist.

4. A history of much data is available.

Is this type of problem suitable for Machine Learning?
Why would ML be better suited than other optimizers and feedbacks?
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Optimization with Gaussian Processes
• GP model built with scikit-learn library

• A probability distribution over possible functions 
that fit a set of points

• Mean function + Covariance function

• Kernel: covariance function 𝑘(𝑥!, 𝑥") of the input variables

• Covariance matrix K = 𝑘 𝑋, 𝑋 =
𝑘(𝑥#, 𝑥#) ⋯ 𝑘(𝑥#, 𝑥$)

⋮ ⋱ ⋮
𝑘(𝑥$, 𝑥#) ⋯ 𝑘(𝑥$, 𝑥$)

• At a sample point 𝑥!, Gaussian process returns mean 𝜇 𝑥!|𝑋 = 𝑚 𝑥! +
𝑘 𝑥!, 𝑋 𝐾%# 𝑓(𝑋) − 𝑚 𝑋  and variance 𝜎& 𝑥!|𝑋 = 𝑘 𝑥!, 𝑥! − 𝑘(𝑥!, 𝑋)𝐾%#𝑘(𝑋, 𝑥!)

2. The data to optimize on has 
significant uncertainties.

3. Models of the accelerator exist

mailto:Georg.Hoffstaetter@cornell.edu


Georg.Hoffstaetter@cornell.edu                              C-AD MAC  December 17, 2024    12

Merit of physics-informed optimization

Courtesy
Auralee Edelen 

mailto:Georg.Hoffstaetter@cornell.edu


Georg.Hoffstaetter@cornell.edu                              C-AD MAC  December 17, 2024    13

AGS Performance
Highest AGS performance is difficult to achieve 
and maintain

There is much value in just holding a known 
optimum

Our optimization approach combines
(a) minimizing and maintaining emittances and 
(b) direct polarization interventions

(Not a fit)
Known good performance line

Good performance 
achievable, but hard to 
keep

AGS Polarization vs intensity for RHIC fills (Run 24)
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Polarized collider performance vs. beam intensity

14

Collider luminosity, ℒ 

ℒ ∝
𝑁#

𝜀
N = intensity/ bunch
𝜀 = tran. emittance

Polarized collider figure of merit 
(for polarization P): 

ℒ	𝑃4
ℒ	𝑃5

FoM = 

Since both emittance and 
polarization degrade with intensity 
figure of merit decreases rapidly

FoM dependence on intensity 
closer to linear in N than 
quadratic.

Pol vs Intensity

Emittance vs Intensity

AGS extraction

Polarized beam collider FOM

transverse spin

longitudinal spin

Impact of intensity increase on FoM 
given emittance and polarization 
dependence at AGS extraction
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Emittance reduction è less depolarization

To reduce and maintain emittances we

• optimize Linac to Booster transfer

• optimize Booster to AGS transfer

• correct optics and orbit in Booster and AGS

• use orbit responses to calibrate models of Booster and AGS.

• split bunches in the Booster for space charge reduction and re-merge 
them at AGS top energy.
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Developed so far, for the control room …
• Bayesian Optimization of Booster 

injection, available in the control room

• Bayesian Optimization of AGS injection, 
available in the control room

• Reinforcement Learning routine of AGS 
bunch merges, partially tested

This allows maintaining optimal emittances 
automatically.

These were not yet ready for the last RHIC 
run. Th
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Injection

Capture/Early acc
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Main mag
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Booster injection/early acceleration process sets maximum beam 
brightness for rest of acceleration though RHIC

Goal: Get most current past fixed V and H scrapers.

Model building (complex): Injection is complex, incl. ionization foil 
with 300 turn scattering, H and V scraping, space-charge dynamics 
an acceleration.

Optimization: Many ”knobs” are available, incl. transfer line 
magnets, puls length vs. height, RF capture parameters, Booster 
orbit and optics.
So far, our Bayesian Optimization only uses transfer line magnets.

Instrumentation (complex):
• WCM, BPMs don’t work until after capture
• No transverse profile monitor in Booster
• Scraping efficiency as proxy for brightness optimization
• Emittance only measurable in the extraction line via multiwire

Space charge tune spreads
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Model building for Booster injection

From Linac

126° 
bend

To Booster

Booster injection process sets maximum beam 
brightness for rest of acceleration through RHIC

• Transfer line, including complex injection magnet 
modeled.

• Ionization foil and 300 turn scattering modeled

• Acceleration to H and V scrapers modeled

• Acceleration modeled, not yet with space charge

Goals:
(a) set up a digital twin to streamline operations

scrape

(b) make Bayesian Optimization physics informed by the model.

mailto:Georg.Hoffstaetter@cornell.edu


Georg.Hoffstaetter@cornell.edu                              C-AD MAC  December 17, 2024    19

Digital Twin for hadron injector sections
Ø Additional benefit: Neural network can be trained 

to predict slow to simulate beam behavior in 
operations time, e.g. space charge dynamics.

Ø ML control routines always have the up-to-date 
physics model available.

Example digital-twins for CBETA: combine Bmad with EPICS bidirectionally.

A Digital Twin is a bi-directional connection between an 
accelerator’s physics model and its control system.

• Bmad è control system: DT results are displayed by 
the control system, just like  measured accelerator 
data.

• Control system è DT: Power supply settings 
automatically load into the physics model.

Great for continuous comparison of operations and model.
Great for offline development of operations procedures.
Great for virtual diagnostics.

DT currently 
being prepared 
for the Booster.
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Speed up of BO with physics information
BO of emittance minimization already works, but it 
could be faster with model information.

• To model injection into the booster, the beam’s 
phase space distribution in the LtB line needs to 
be known.

• While a NN can be trained to determine the 
beam’s phase space distribution from 
tomography, the current diagnostics does not 
permit to resolve x-y coupling.

• Polarized proton beam has such coupling 
because it is created in a solenoid field.

è We will use skew quads in the booster and tilted 
multi wire detectors to resolve x-y coupling.

è Then our BO can be extended by a physics 
informed model.

Simulated (left) and measured (right) quadrupole scan 
results for horizontal quad QF8 observed at two multi-
wires (MW099, MW107) in the LtB line. 

è The x/y projected emittances change along the 
transfer line, i.e., coupling needs to be considered.

QF8 current [A]QF8 current [A]
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Result: Automatic BO for Booster injection

• Controls: Power supply currents of two correctors 
and two quadrupoles at the end of the LtB line

• Beam size decrease in both planes in the BtA line 
in correspondence with intensity increase

Bayesian optimization of the Booster injection process.

Top: power supply currents of two correctors (tv95, 
th115) and two quadrupoles (qf12, qd13) in the LtB line.

Middle: beam intensity after Booster injection, scaping, 
and acceleration.

Bottom: Beam size measurements in the BtA line 
during Bayesian optimization.

Control system: This Bayesian Optimization is 
now available as a control system application to 
operators.
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BtA Transfer Line Structure in Bmad
• Lattice can be divided into branches connected with 

forks to simulate connection to a transfer line

• Require documented coordinates for elements to 
construct correct geometry

• Beam parameters from the end of one branch is 
automatically inherited by the start of downstream 
branch → continuous tracking

• BtA universe with three branches
• 1st branch: Booster ring with extraction bumps
• 2nd branch: Extraction line from F2 to F6 septum 

with F3 kicker on

• 3rd branch: BtA transfer line
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BtA modeling and data comparison
Goals:
(a) set up a digital twin to streamline operations
(b) make Bayesian Optimization physics informed by the model.

• Bmad tracking leads to horizontal dispersion matching measurements

• Beam size values from bunch tracking show agreements for upstream multi-wire 
measurements, disagreement downstream needs further investigation 

• BO of emittance minimization already works, but it could be faster with model 
information.

mailto:Georg.Hoffstaetter@cornell.edu


Georg.Hoffstaetter@cornell.edu                              C-AD MAC  December 17, 2024    24

Result: Automatic BO for AGS injection
Algorithm efficiently found settings that were different, but at least as good as the 
previously optimized ones, automatically maintain the AGS injection at optimal 
performance without human intervention.

è Optimization of current   while   observing the brightness.
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Uncertainty Quantification from orbit responses in the Booster

è Good agreements between Booster data and Bmad model are reached, 
with small discrepancies between model and measurement (within 1 mm)

è chi-squared/DF = 1.4 for model-experiment. Reasons are analyzed by
(a) Least square fitting to reduce chi-squared.
(b) Uncertainty Quantification.

Orbit response data can be used to find 
and quantify unknown parameters (e.g., 
power supply scaling factors, magnet 
misalignment etc.) in real accelerators,
by Lucy Lin (from C-AD) and Nathan Urban (from CSI)

dkv/m2

Bayesian UQ Bayesian UQ

Classical 𝜒% analysis

è The main power supply transfer 
functions (a) do not reduce 𝜒&, 
(b) their UQ is consistent with 0

è Other error sources are being 
analyzed.

𝜒# 
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Reinforcement Learning (RL) 

Many system parameters can be measured and may be implicitly related to the the optimum.

Example: Drive along a road with one viewpoint that has uncertainty

A second viewpoint increases the directional accuracy, even if it has a similar error.

This relies on knowing how the second measurement is related to the direction.

Reinforcement Learning empirically learns this relationship!

This relationship remains useful, even under small changes è follows optimum.

Extension of our initial goal of using physics-informed Bayesian Optimization: Can RL have advantages over 
BO for accelerator controls?

+ RL uses more data about the accelerator (as state variables) even if relationship to the optimum is not known.

+ RL follows an optimum setting, even when the system changes è accelerator control not only optimization.

-- RL requires millions of data points and may seem inapplicable to accelerators, but with an improved model 
may deliver many of these points, making RL feasible.
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Bunch splitting in Booster / merging in AGS
Splitting in the Booster and merging after AGS accelerator reduces space charge and emittance 
growth è more polarization

Three RF amplitudes (h=3, 6, 12) in the AGS during bucket manipulation and merging.

è We have set up Reinforcement Learning for the merging section.
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Reinforcement Learning Tuning
test - varying 6 voltage points for each RF system

28

Original

Start

1st step

Bunch traces Last traceRF voltages
Goal: minimize the longitudinal emittance 
after bunch merging
RF amplitudes as function of time have 
been optimized in experiments.

Automatic readout of longitudinal 
emittance not yet available, test used 
simulated bunch lengths as reward.

Plan: check whether Reinforcement 
Learning has advantages over BO.

Plan: Include also RF phases as actors 
and coherent oscillations as state 
variables.

Determine useful state variables
• measurable
• related to the reward

2nd step

3rd step
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Timing of tune jumps
The G-gamma meter and accurate energy vs. time

(1) Measure the energy by orbit + revolution frequency measurement

(2) Measure of energy by field + revolution frequency measurement

(3) Measure energy by spin flip at every integer spin tune
Combined optimization

è measurement with reduced 
uncertainty at every energy

è better timing

èhigher polarization

Still being worked on. It is less critical 
with new skew-quad resonance 
minimization.
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Model building for the AGS

30

• Proton energy range 2.5 GeV -> 23 GeV
• Polarization preserved using

• helical dipole snakes
• + horizontal tune jump
• Resonance correction in development (would replace tune jump)

AGS Warm snake

AGS Cold snake

AGS Optics (low energy)

No snakes Snakes +compensation

• Requires “near integer” tune
• Orbit, optics unusually sensitive 

to errors

• Helical dipoles are complicated 
magnets

• Large optical effects at low 
energy

• Many related magnetic elements 
for compensation orbit/optics

• The complex fields and lattice + high 
tune requirements are a challenge to 
modeling (Eiad Hamwi’s work)
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Symplectic AGS Siberian Snake modeling

• AGS Siberian snake field 
maps violates symplecticity, 
especially at AGS injection 
energy 

• Symplectic tracking (green) is 
stable for over 10,000 turns

Horizontal Vertical

Turn Number Turn Number
x 
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Polarization is preserved in the AGS with two 
partial helical dipole snakes (10% and 6% 
rotation)

Provides spin tune ‘gap’ where imperfection 
and vertical intrinsic resonance condition are 
never met

• νs ≠ N  (full spin flips)
• νs ≠ N +/- Qy

Horizontal resonance condition still met
• νs = N +/- Qx

• Horizontal resonance are weak, but 
many (82 crossings)

• Currently handled with fast tune 
jump

ΔQx = 0.04, 100 μs 

32

Spin 
tune gap

Hor resonance 
crossings

Tune
jump

(pause tune 
jump
near transition)

Reduction of AGS resonance driving terms

Partial snakes drive horizontal depolarizing resonances
è Compensate by other coupling elements, e.g., skew quads
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Horizontal Resonance Amplitudes in AGS

• Two snakes, separated by 1/3 circumference
• Modulated resonance amplitude highest 

near Gɣ = 3N (when snakes add 
constructively)

• Horizontal resonances occur 
every 4-5 ms at the standard AGS 
acceleration rate

ML/AI:
Physics informed 
Learning of the optimal
skew quad strength +
optimal timing.

Reduction of AGS resonance driving terms
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AGS Spin Resonance Correction Skew Quadrupoles
• A set of 15 pulsed skew quadrupoles, each with an individual 

power supply
• Designed to excite coupling resonance to compensate the 82 

depolarizing resonances associated with horizontal betatron 
motion in the AGS partial snakes

• 15 knobs, 82 different resonances
• Expected effect is 10-15% gain in polarization
• A +/-2% measurement takes 5-10 minutes

See presentation by Vincent Schoefer
• Run 24: Observation of polarization gain factor (+10%) during 

acceleration (similar to existing tune jump), with the about the top 
half the pulses enabled)

• Plans for further improvements (enabling more pulses for 5-10% 
more gain):

• Addressing model inaccuracies at low energy 
• Iteration on orbit centering
• Possible optimizations based on ML methods

Skew quad current pulses

Correction amplitude scan

Zero correction

Skew quad current pulses

Partial correction
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SciBmad a ML-oriented Toolkits (Libraries)

Advantages the toolkit:
Fully differentiable (reverse and forward)
è excellent for Neural Network optimizations
è Excellent for Bayesian optimization with slope information
• Cuts down on the time needed to develop programs.
• Cuts down on programming errors (via module reuse).
• Provides a simple mechanism for lattice function calculations from within control 

system programs.
• Standardizes sharing of lattice information between programs. 
• Increased safety: Modular code provides a firewall. For example, a buggy module 

introduced into the toolkit will not affect programs that do not use it.

Toolkit Dynamic Aperture Program

Control System Programs

Lattice Design Program

Etc.

IBS Simulation Programs
This project is
• funded by DOE-HEP
• has a growing list of collaborators
• has a weekly wise people meetings
•                     è is looking for collaborators
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Summary 
• DOE-NP funded project for the enhancement of proton polarization using ML/AI. Goal: 5%.

•  Bayesian Optimization for automatically optimizing and maintaining emittances in Booster and AGS 
are available in the control room.

• Reinforcement learning routings for optimal bunch merging are being developed and have been tested in 
the control room.

• Models of LtB line, Booster, BtA line, and AGS have been much improved, will be the basis for 
differentiable digital twins.

•  Excellent team from BNL, Cornell, JLAB, SLAC, and RPI has formed, two PhD students have graduated 
(Bohong Huang and Lucy Lin. She is now postdoc in C-AD).

• Reduction of resonance driving terms already works above transition energy, may use ML belove 𝛾!.

• A continuation proposal is being written extending to (a) polarized sources and linac, (b) Reinforcement 
Learning, (c) differentiable Digital Twins, (d) emittances of unpolarized beams.
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BNL: Kevin Brown, Weinin Dai, Bhawin Dhital, Yuan Gao, Levente Hajdu, Kiel Hock, 
Bohong Huang, Natalie Isenberg, Nguyen Linh, Chuyu Liu, Vincent Schoefer, Nathan 
Urban

Cornell: Georg Hoffstaetter de Torquat (also BNL), Lucy Lin, Eiad Hamwi, David Sagan, 
Matt Signorelli

SLAC: Auralee Edelen

JLAB: Malachi Schram, Armen Kasparian

RPI: Yinan Wang

Radiasoft: Nathan Cook, Jon Edelen, Chris Hall

Dominant Participants

mailto:Georg.Hoffstaetter@cornell.edu


Georg.Hoffstaetter@cornell.edu                              C-AD MAC  December 17, 2024    38

Thank you and Questions?
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