

Status of AME & NUBASE

F.G. Kondev & R. Chakma Physics Division, Argonne National Laboratory

Nuclear Physics

Annual USNDP meeting, October 1-4, 2024, Duke University

AME & NUBASE

- ⇒ provide the recommended values for atomic masses, various decay and reaction Q values & other basic nuclear properties $(T_{1/2}, J\pi, decay)$ modes and BR) for all known nuclei in their ground and isomeric $(T_{1/2} > 100)$ ns) states
- impact on the fundamental sciences (not only NP) and applied programs
- one of the most cited articles in LE Nuclear Physics
- \Rightarrow ANL-NDP contributes since 2005 involved in the 2012, 2016 & 2020 editions
- ⇒ latest libraries were published in March 2021: AME2020 & NUBASE2020
 - coordinated by M. Wang (IMP) & F.G. Kondev (ANL)
 - recommended data for 3558 ground states and 1983 isomers

AME: What Data Are Considered

- ⇒ Direct (mass spectrometry) and Indirect (reactions and decays) Data worldwide
 - TOF & MR-TOF, Storage Rings & Penning Traps DIRECT
 - Reaction Energies (n,γ) , (p,γ) and (a,b) close to stability] INDIRECT
 - Decay Energies β^- , β^+ , α and p decays far from stability \Box
 - experimental data are critically evaluated & the recommended values and their uncertainties (covariances) are determined using least-squares fit approach

Value of Evaluation - example 69,69mCo

PHYSICAL REVIEW C 101, 041304(R) (2020)

Rapid Communications

Precision mass measurements of 67 Fe and 69,70 Co: Nuclear structure toward N = 40 and impact on *r*-process reaction rates

Nuclide	$T_{1/2}$ (ms)	I^{π}	r	$\Delta_{\rm JYFL}$ (keV)	Δ_{lit} (keV)	Difference (keV)
⁶⁷ Fe	394(9)	$(1/2^{-})$	0.797874190(8)	-45709.1(3.8)	-45610(270)	-99(270)
⁶⁹ Co	180(20)	7/2-#	0.821649141(428) ^a	-50383(44)	-50280(140)	-103(147)
⁶⁹ Co ^m	750(250)	1/2-#	0.821651504(291) ^a	-50207(36)	-49780(240)#	-430(240)#
⁷⁰ Co ^b	508(7) [50]	$(1^+, 2^+)$ [50]	0.833615937(21)	-46525(11)	-46430(360)#	-95(360)#

...publication

PHYSICAL REVIEW C 103, 029902(E) (2021)

Erratum: Precision mass measurements of ⁶⁷Fe and ^{69,70}Co: Nuclear structure toward N = 40 and impact on *r*-process reaction rates [Phys. Rev. C 101, 041304(R) (2020)]

	Nuclide	T _{1/2} (ms)	I^{π}	r	$\Delta_{\rm JYFL}~({\rm keV})$	Δ _{lit} (keV)	Difference (keV)
erratum	⁶⁷ Fe ⁶⁹ Co ⁶⁹ Co ^m ⁷⁰ Co ^b	394(9) 180(20) 750(250) 508(7) [16]	$(1/2^{-})$ 7/2 ⁻ # 1/2 ⁻ # $(1^{+}, 2^{+})$ [16]	0.797874191(49) 0.82164916(110) ^a 0.82165149(64) ^a 0.83361594(15)	$\begin{array}{r} -45709.1(3.8) \\ -50385(86) \\ -50203(50) \\ -46525(11) \end{array}$	-45610(270) -50280(140) -49780(240)# -46430(360)#	-99(270) -105(170) -423(250)# -95(360)#

2	2 PHYSICAL REVIEW C 97, 014309 (2018)								
Precision mass measurements of neutron-rich Co isotopes beyond $N = 40$									
Ion	Reference	Frequency ratio	Mass (u)	ME (keV)	AME2016 (keV)	ΔME (keV			
⁶⁸ Co ²⁺	¹⁶ O ¹⁸ O ⁺ ³⁴ S ⁺	1.000 641 552(70)	67.944 559 2(48) 67 944 559 3(82)	$-51\ 642.8(4.4)$ -51 642 6(7.6)	-51 930(190)	290(190) 290(190)			
⁶⁹ Co ²⁺	³⁹ K ⁺	1.130 267 90(24)	68.946 093(15)	-50 214(14)	-50 280(140)	66(140)			

² claimed to be ⁶⁹Co, but it is actually ^{69m}Co

⁶⁹Co - 100% influence from 1

69mCo - 93% influence from 2 and 7% influence from 1

NUBASE - Ground states & Isomers

beware of isomers - do we have the right relations?

162Eu-84Kr1.929	
162Eu-133Cs1.218	
162Eum-84Kr1.929	
162Eum-133Cs1.218	
162Eum-133Cs1.218	

J. Van Schelt et al., PRL111 (2013) 061102

F.G. Kondev et al., CPC 45 (2021) 030001

NUBASE evaluation of basic nuclear properties

⇒ masses (Ex) for isomers and their method of deduction - integral part of AME ⇒ $T_{1/2}$, $J\pi$, decay modes and BR for both ground states (3558) and isomers (1983) ⇒ properties of 205 Isobar Analog States

Value to ENSDF

PHYSICAL REVIEW C

VOLUME 46, NUMBER 4

Isomers in three doubly odd Fr-At-Bi α -decay chains

AME extrapolations

- ⇒ using an empirical approach by assuming that the Trend of the Mass Surface (TMS) is smooth
 - TMS extrapolated mass values for a limited number of unknown nuclei
 - replace "irregular" experimental masses by TMS extrapolated values 77 cases in AME2020

accuracy of the AME extrapolation

TMS in AME2016, BUT exp in AME2020

not always justified ... new physics?

S. Michimasa et al., PRL125 (2020) 122501

build up of deformation around N=40

AME extrapolations - cont.

Bayesian Framework for Mining of Evaluated Nuclear Mass Data

⇒ Collaborative DOE/SC/NP FOA funded project between MSU, ANL and SKIDMORE

 quantify nuclear binding in regions where no experimental data are available by employing global nuclear models, current Nuclear Data and Bayesian MLimplications for nuclear astrophysics

experts in nuclear theory, nuclear data, nuclear astrophysics & statistics

Witek Nazarewicz (PI)

Filip Kondev (Co PI)

SKIDMORE [°] [°] ^L ^L [°] [°] [°] [°]

Vojtech Kejzlar

Hendrik Schatz (Co PI)

New dissemination platforms

pdf & ascii covariances https://www.anl.gov/phy/atomic-mass-data-resources https://amdc.impcas.ac.cn/web/nubcleus%202_en.html https://www-nds.iaea.org/amdc/ (ANL) (IMP) (IAEA)

Nucleus++: Data Analysis Tool

42 MO64 Search ME:-83561(8) ME--80344(9) ME:-77331(9) 11.3(2) m 50(2) s 36.3(8) s 8.73(12) s 104 106 102 103 105 (5/2+) 5/2+* (4+) 5/2+* Nb₆₀ Nb₆₁ Nb₅₉ Nb₆₅ $_{41}$ Nb $_{62}$ $_{41}$ Nb $_{64}$ 41 Nb 41 41 0+ 105 103 100 101 102 (5/2-) 104 3/2+* Zr 65 Zr 60 40 Zr 61 40 Zr 62 40 Zr 63 ₄₀ Zr ₆₄ 40 40 102 100 101 5/2+* 103 104 (0+,1+)# 5/2+* (5-)5/2+# 39 39 39 39 60 61 62 100 101 102 103 98 3/2+* (5/2-) 5/2+# 104 **Sr**₆₁ Sr 62 Sr 63 Sr 60 Sr 65 Sr 59 Sr 64 38 38 38 38 38 38 38 99 100 (4+) 103 3/2+* (0-)* (3/2+) 101 3/2+# 102 Rb₆₁ Rb₆₄ Rb₆₅ ₃₇ Rb ₃₇ Rb₆₃ Rb Rb 37 37 37 ME:-51121 Backdror Global

Desktop Applications

Mobile Applications

Next AME & NUBASE Libraries

initially planed for 2024 -> currently aiming for 2026
imited workforce - positive development Rikel Chakma (ANL)
collaboration is more challenging - mostly via ZOOM ...