

Member of the US Nuclear Data Program

Consistency of Configuration Assignment in ENSDF

F.G. Kondev Physics Division, Argonne National Laboratory

Nuclear Physics

Introduction

ENSDF General Policies

For each level:

- E(lev): Excitation energy (relative to the ground state).
- J^{II}: Spin and parity with arguments supporting the assignment.
- 3. $T_{1/2}$ or Γ : Half-life or total width in center of mass.
- Decay branching for the ground state and isomers (an isomer is recently redefined as a nuclear level with T_{1/2}≥100 ns (earlier it was ≥0.1 s) or one for which a separate decay data set is given in ENSDF).
- Q,μ: Static electric and magnetic moments.
- XREF Flags to indicate in which reaction and/or decay data sets the level is seen.
- Configuration assignments (e.g., Nilsson orbitals in deformed nuclei, shell-model assignments in spherical nuclei).
- Band assignments and possibly band parameters (e.g., rotational bands in deformed regions).
- Isomer and isotope shifts (usually only a literature reference is given).
- Charge distribution of ground states (usually only a literature reference is given).
- Deformation parameters.
- 12. B(E2)↑,B(M1)↑,..: Electric or magnetic excitation probabilities when the level half-life or the ground-state branching is not known.
- useful when applying systemics arguments for $J\pi$ assignment
- important in nuclear structure studies & applications

Introduction - cont.

INDC(NDS)-0733 Distr. Web G,ND

INDC International Nuclear Data Committee

Summary Report of an IAEA Technical Meeting

Co-ordination of the International Network of Nuclear Structure and Decay Data Evaluators

Lawrence Berkeley National Laboratory, Berkeley, USA

22 - 26 May 2017

IAEA International Atomic Energy Agency

INDC(NDS)-0783 Distr. Web G, ND

INDC International Nuclear Data Committee

Summary Report of an IAEA Technical Meeting

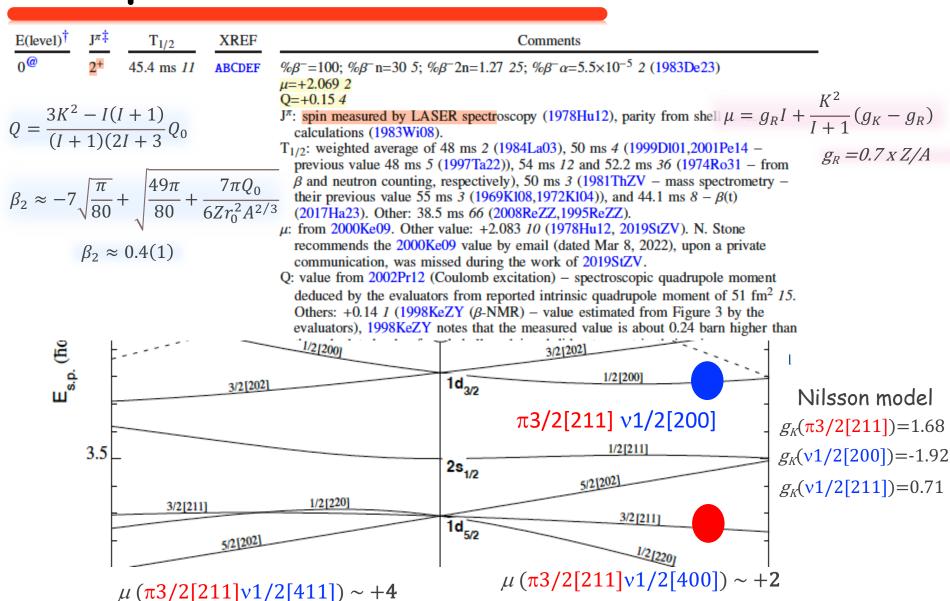
Co-ordination of the International Network of Nuclear Structure and Decay Data Evaluators

IAEA Headquarters, Vienna, Austria

8 - 12 April 2019

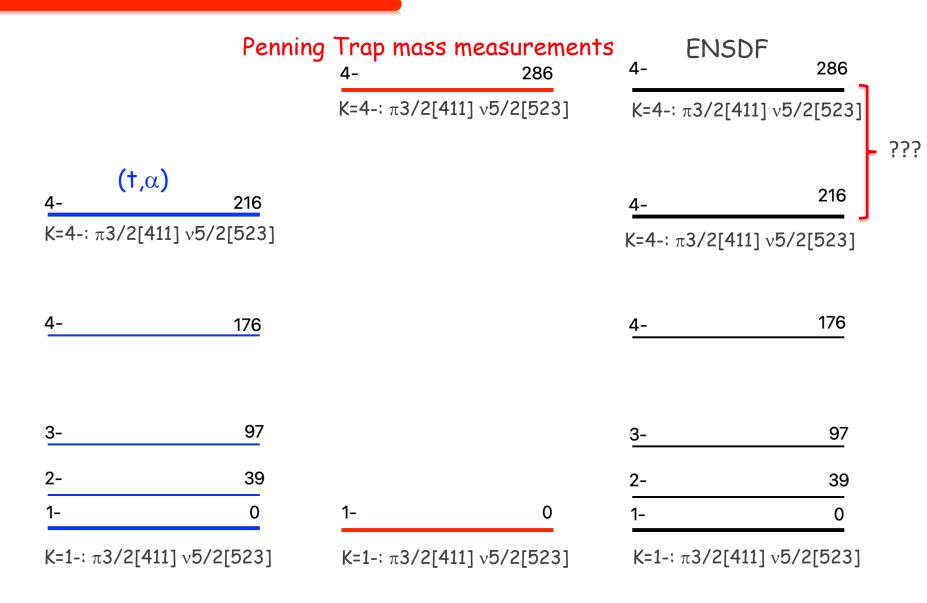
40 ANL, ANU

Policy implementation


Recommend suitable standard(s) for band configurations - need to agree upon the adoption of a particular nomenclature.

⇒ recommendations at the 2019 NSDD meeting

⇒ S. Basunia (LBNL) presentation at the 2024 NSDD meeting


- \Rightarrow we MUST provide CONF at minimum for the ground state and isomers when J π are given
- ⇒ still not implemented by many evaluators nor enforced by various reviewers
- ⇒ Myth: CONF not given since the authors did not give it ... BUT ...
 - evaluators are experts in the region they evaluate in most cases the assignment is straight forward; there could be complications, e.g. region of shape coexistence
 - most of the evaluators are located at the NP research facilities interactions with the NS experimentalists and/or theorists would be beneficial

Example - 1: an odd-odd nucleus

CONF: $\pi 3/2[211] \text{ v}1/2[400]$

Example - 2

Spherical nuclei: shell-model notation

- use only the valence particles (holes)
- the spin and parity balance
- close relation between CONF and MOMM1 (g-factors, g_K - g_R , ...)

single-particle (hole)

$$\pi(h_{9/2}^{+1})$$
 $\nu(p_{1/2}^{-1})$
 $\pi(h_{9/2}^{+1}) \otimes 2^{+}$

|p(h{-h/2}{++1}), e.g.
209
Bis3; J π =9/2-
|n(p{-1/2}{+-1}), e.g. 207 Pb₁₂₅; J π =1/2-
|p(h{-h/2}{++1})~#2{++}; J π =5/2- to 13/2-

two-particle (hole)

$$\pi(h_{9/2}^{+1}) \otimes \nu(p_{1/2}^{-1})$$

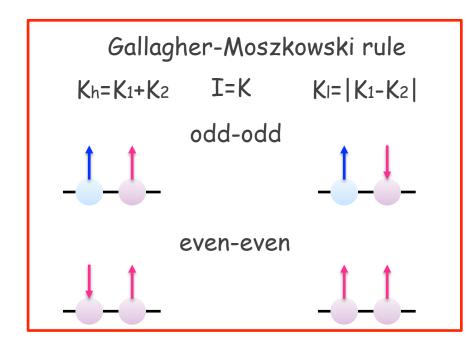
 $\pi(h_{9/2}^{+2})_{8^+}$

```
|p(h{-h/2}{++1})^{-}\#|n(p{-1/2}{+-1}); J\pi=4+ \text{ or } 5+\\ |p(h{-h/2}{++1}){-\{8\{++\}\}\}}; J\pi=8+
```

many-particle (hole)

$$\pi(h_{9/2}^{+1}) \otimes \nu(p_{1/2}^{-1}, f_{5/2}^{-1})_{4^{+}} \qquad \text{J}\pi = 1/2 \text{- to } \textbf{17/2} \text{-, odd-Z (N)}$$

$$\pi(h_{9/2}^{+2})_{8+} \otimes \nu(p_{1/2}^{-1}, f_{5/2}^{-1})_{4^{+}} \qquad \text{J}\pi = 12^{+}, \text{ even-even (or odd-odd)}$$


Deformed nuclei: Nilsson-level labeling

one-quasiparticle states

$$K^{\pi} = 1/2^{-}, \pi 1/2^{-}[541]$$

 $K^{\pi} = 7/2^{+}, \nu 7/2^{+}[633]$

two-quasiparticle states

$$K^{\pi} = 2^{-}, \pi 1/2^{-}[541] \otimes \nu 7/2^{+}[633]$$

 $K^{\pi} = 8^{-}, \pi^{2}(7/2^{+}[404], 9/2^{-}[514])$

multi-quasiparticle states

$$K^{\pi} = 14^{+}, \pi^{2}(7/2^{+}[404], 9/2^{-}[514])_{8^{-}} \otimes \nu^{2}(5/2^{-}[512], 7/2^{+}[633])_{6^{-}}$$

some time complicated band structures (very high spin) -> shell-model notation