

Survey of Experimental Uncertainties in Recent Literature

Libby Ricard National Nuclear Data Center

Motivation

- Ongoing discussion on averaging procedures
- Essential item to understand is "type" of uncertainty
- After NSDD and subsequent email discussions, volunteered to "keep track" of uncertainties through XUNDL compilations for PRC

Good news : about 1/3 of articles discuss and divide their uncertainties Also good news : we can probably infer uncertainty components in similar papers

Caveats :

- 1) Only looked at a few basic properties
- 2) This is just a few months of PRC articles
- 3) Took directly from authors statistical versus systematic definitions

Gamma ray energies – high statistics

PHYSICAL REVIEW C 110, 024305 (2024)

Detailed spectroscopy and γ - γ angular correlation measurements of ¹²²Xe

B. Jigmeddorj ©,^{1,2,*} P. E. Garrett ©,^{1,3} L. Próchniak ©,⁴ A. J. Radich ©,¹ C. Andreoiu ©,⁵ G. C. Ball ©,⁶ T. Bruhn,^{5,6} D. S. Cross,⁵ A. B. Garnsworthy,⁶ B. Hadinia,^{1,†} S. F. Hicks ©,^{7,8} M. Moukaddam ©,^{6,‡} J. Park ©,^{6,9,§} J. L. Pore,^{5,∥}
M M. Raiabali ©,^{6,1} F. T. Rand ^{1,#} U. Rizwan ⁵ C. F. Svensson ¹ P. Voss ^{5,**} Z. M. Wang ©, ^{5,6} I. L. Wood ¹⁰ and S. W. Yates ©⁸

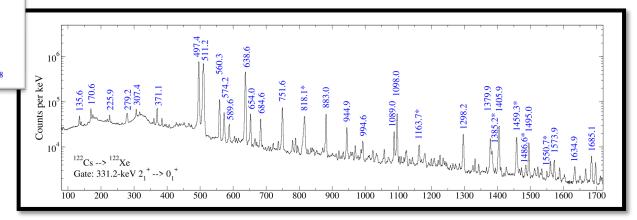
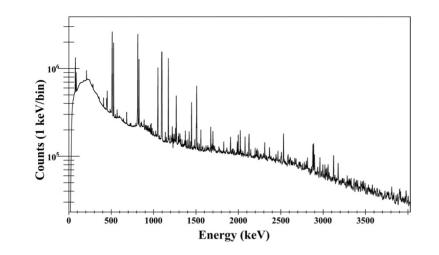


TABLE I. Levels and observed γ rays in ¹²²Xe populated in the β^+/EC decay of ¹²²Cs 1⁺ ground state. The intensity (I_{γ}) of each γ ray is given relative to that of the 331 keV $2_1^+ \rightarrow 0_1^+ \gamma$ ray defined to be 10 000 units. The normalization factor for converting the relative to absolute β -feeding intensities is 0.009 05(16). The log *ft* values are lower limits on an absolute scale. All γ -ray energies include statistical uncertainties, and an additional systematic uncertainty of 0.2 keV has not been accounted for.

E _{initial} (keV)	j_i^{π}	E_{γ} (keV)	$E_{\rm final}$ (keV)	j_f^π	I_{γ}	ML	δ	BR	I_{eta}	logft	
331.26(9) 828.61(10) 843.19(9)	2+ 4+ 2+	331.24(3) 497.41(3) 511.21(3)	0.0 331.26(9) 331.26(9)	0^+ 2^+ 2^+ 0^+	10000 226(5) <2107(65) 202(8)	E2 E2 M1, E2		100 100 <84.3(4)	26.2(10) 0.61(6) <16.6(7)	7.60(1) 9.06(3) >7.62(2)	Statistical uncertainties are <0.1 kev (as expected)
1149.31(11)	0+	843.16(4) 306.12(15) 818.14(3)	0.0 843.19(9) 331.26(9)	$0^+\ 2^+\ 2^+$	393(8) 17.1(13) 751.0(48)	E2 E2		>15.7(4) 2.2(2) 97.8(2)	7.37(16)	7.86(1)	Systematic uncertainties are 0.2 keV
1214.28(10)	3+	371.08(4) 385.69(6)	843.19(9) 828.61(10)	$2^+ 2^+ 4^+$	97.5(27) 26.1(9)	M1, E2 M1, E2	$8.6^{+6.7}_{-2.7}\\2.8^{+0.5}_{-0.4}$	30.7(7) 8.2(2)	1.33(6)	8.57(2)	
1402.82(12)	4+	883.00(3) 559.64(6) 574.19(4)	331.26(9) 843.19(9) 828.61(10)	$2^+ 2^+ 4^+$	194.2(42) 14.0(4) 12.38(30)	M1, E2 E2 M1, E2	$0.05^{+0.04}_{-0.04}$ $3.0^{+3.3}_{-1.3}$	61.1(13) 53.0(5) 47.0(5)	0.057(17)	9.86(13)	

Gamma ray energies – high statistics

(no detailed description of uncertainties)


PHYSICAL REVIEW C 109, 054317 (2024)

Low-spin states in ¹¹⁸Sn populated by the radiative capture of thermal neutrons

K. Ortner,¹ C. Andreoiu,¹ C. M. Petrache,² Chong Qi,³ A. Astier,² T. D. Bucher,⁴ G. Colombi,⁵ E. Dupont,² F. H. Garcia,^{1,*} P. E. Garrett,⁶ S. Guo,⁷ G. Häfner,⁸ B. Jigmeddorj,⁶ J. Jolie,⁸ F. Kandzia,⁵ V. Karayonchev,⁸ Y.-H. Kim,⁵ L. Knafla,⁸ B. F. Lv,^{2,7} N. Mãrginean,⁹ E. McGee,⁶ C. Michelagnoli,⁵ C. Mihai,⁹ P. Mutti,⁵ C. Porzio,¹⁰ K. Raymond,¹ J.-M. Régis,⁸ N. Saed-Samii,⁸ P. Spagnoletti,¹ W. Urban,¹¹ S. Valbuena,⁶ J. R. Vanhoy,¹² K. Whitmore,¹ J. Wisniewski,¹¹ and S. W. Yates¹³

TABLE I. Observed levels and transitions from the present 117 Sn (n, γ) 118 Sn experiment. Level energies were fit to the γ -ray transition energies using a least-squares fit. The energies in bold are the newly placed transitions and levels which are not in the current Evaluated Nuclear Structure Data File (ENSDF) sheet [24]. Spins of newly placed states are given based on γ decay selection rules. Branching ratios are compared to a previous high-statistics study involving β decay of the 5⁺ isomer of 118 In [10].

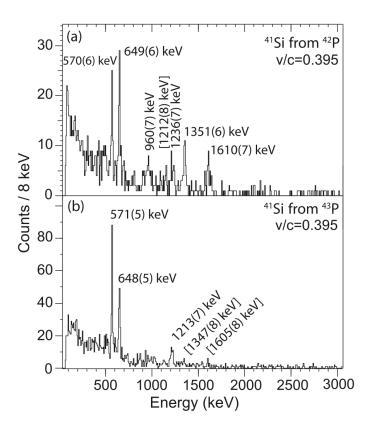
$E_{\text{level},i}$		$E_{\text{level},f}$		E_{γ}			$I_{\gamma}^{\text{norm.}}$
(keV)	J_i^π	(keV)	J_f^π	(keV)	I_{γ}	$I_{\gamma}^{ m norm.}$	[10]
1229.50(7)	2^{+}	0	0+	1229.7(3)	100	100	100
1758.08(9)	0^+	1229.50	2^{+}	528.9(3)	6.5(2)	100	100
2042.67(8)	2+	1758.08	0^{+}	284.5(3)	0.12(3)	1.1(3)	1.31(17)
		1229.50	2^{+}	813.3(3)	11.3(4)	100(3)	100.0(23)
		0	0^+	2042.9(3)	8.3(3)	74(3)	83.6(26)
2056.66(9)	0^+	1229.50	2^{+}	827.3(3)	5.26(18)	100	
2280.23(14)	4+	1229.50	2+	1050.7(3)	5.31(17)	100	100
2321.1(2)	5-	2280.23	4+	41.0(3)		100(3)	
		1229.50	2^{+}	1091.5(3)		8.6(9)	
2324.77(10)	3-	1229.50	2^{+}	1095.2(3)	9.1(3)	100	100(5)
2327.82(9)	2^{+}	2042.67	2^{+}	285.2(3)	0.156(19)	1.69(20)	2.3(8)
		1758.08	0^+	569.6(3)	0.255(12)	2.76(13)	2.40(14)
		1229.50	2^{+}	1098.4(3)	9.2(3)	100(4)	100(4)
		0	0+	2328.0(3)	1.52(8)	16.6(8)	19.1(8)
2403.01(9)	2^{+}	2042.67	2^{+}	360.4(3)	0.102(9)	1.29(12)	0.91(13)
		1758.08	0+	644.8(3)	0.108(9)	1.36(11)	1.44(6)
		1229.50	2^{+}	1173.7(3)	7.9(4)	100(4)	100.0(26)
2488.57(14)	4+	2280.23	4+	208.6(3)	0.372(13)	47.3(16)	60.3(12)
		2042.67	2^+	446.0(3)	0.79(5)	100(6)	100.0(22)
		1229.50	2^{+}	1259.1(3)	0.54(9)	69(12)	59.2(16)

- 10 Pages of Tables
- Majority of transitions have 0.3 keV uncertainty
- Some have 0.4 or 0.5 keV uncertainty
- Probably safe to infer that 0.3 keV is the systematic uncertainty

Gamma ray energies – low statistics

PHYSICAL REVIEW C 110, 014331 (2024)

First high-resolution γ -ray spectroscopy of ⁴¹Si


A. Gade ^(a), ^{1,2} B. A. Brown ^(a), ^{1,2} J. A. Tostevin ^(a), ³ D. Bazin ^(a), ^{1,2} P. C. Bender ^(a), ^{1,*} C. M. Campbell ^(a), ⁴ H. L. Crawford, ⁴ B. Elman ^(a), ^{1,2} K. W. Kemper ^(b), ⁵ B. Longfellow, ^{1,2,†} E. Lunderberg, ^{1,2} D. Rhodes, ^{1,2,†} S. R. Stroberg ^(a), ⁶ and D. Weisshaar ^(a)

Reported uncertainties on gamma ray energies are 5 -10 keV but type not specified

From A. Gade:

- uncertainty includes statistical and systematic
- systematic uncertainty is dominant, from several contributions, including calibration, beam position (mid-target assumed), beam velocity, etc.

GRETINA + S800 at MSU This is the "future" data

Ground state half-lives

PHYSICAL REVIEW C 109, 055501 (2024)

Editors' Suggestion

Half-life of ⁷¹Ge and the gallium anomaly

E. B. Norman¹, A. Drobizhev,² N. Gharibyan³, K. E. Gregorich,³ Yu. G. Kolomensky³,^{1,2}
 B. N. Sammis³, N. D. Scielzo³, J. A. Shusterman,³ and K. J. Thomas³
 ¹University of California, Berkeley, California 94720, USA
 ²Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
 ³Lawrence Livermore National Laboratory, Livermore, California 94550, USA

III. CONCLUSIONS

Finally, combining the statistical and systematic uncertainties, we determine the half-life of 71 Ge to be

 $t_{1/2}(^{71}\text{Ge}) = 11.4683 \pm 0.0017(\text{stat.}) \pm 0.0082(\text{syst.})$

 $= 11.468 \pm 0.008 \, \text{days}$

0.015% statistical

0.075% systematic

Excited State Half-lives

PHYSICAL REVIEW C 109, 044307 (2024)

Analog B(M1) strengths in the $T_z = \pm \frac{3}{2}$ mirror nuclei ⁴⁷Mn and ⁴⁷Ti

S. Uthayakumaar,^{1,2} M. A. Bentley,⁰,¹ R. Yajzey,³ D. Bazin,^{2,4} J. Belarge,² P. C. Bender,² P. J. Davies,¹ B. Elman,^{2,4} A. Gade,^{2,4} T. Haylett,¹ H. Iwasaki,^{2,4} D. Kahl,^{5,6} N. Kobayashi,² B. Longfellow,^{2,4} S. J. Lonsdale,⁵ E. Lunderberg,^{2,4} L. Morris,¹ D. R. Napoli,⁷ X. Pereira-Lopez,^{8,9} F. Recchia,^{2,10} E. C. Simpson,¹¹ R. Wadsworth,¹ and D. Weisshaar,⁹

the six-channel region described above. This increases the lifetime by 5 ps, and was also included as an additional systematic error. The total systematic error is then 14 ps. By adding both the statistical and systematic errors in quadrature, this yields a lifetime of $\tau = 331 \pm 4$ (stat.) ± 14 (sys.) ps $[T_{\frac{1}{2}} = 229(10) \text{ ps}]$ for the $\frac{7}{21}$ state.

tematic error of 1.6%). The final systematic error is therefore 32 ps. This yields a final result of $\tau = 687 \pm 17$ (stat.) ± 32 (sys.) ps. The γ -ray energy had the same 0.3 keV statistical

(sys.) ps. The γ -ray energy had the same 0.5 keV statistical

Systematic uncertainty roughly twice that of statistical

PHYSICAL REVIEW C 109, L061301 (2024)

Letter

New isomeric transition in ³⁶Mg: Bridging the N = 20 and N = 28 islands of inversion

M. Madurga⁰, ¹ J. M. Christie, ¹ Z. Xu⁰, ¹ R. Grzywacz⁰, ^{1,2} A. Poves⁰, ³ T. King⁰, ¹ J. M. Allmond⁰, ² A. Chester, ⁴ I. Cox⁰, ¹ J. Farr⁰, ¹ I. Fletcher, ¹ J. Heideman, ¹ D. Hoskins, ¹ A. Laminack⁰, ² S. Liddick, ^{4,5} S. Neupane, ¹ A. L. Richard, ^{4,*} N. Shimizu⁰, ⁶ P. Shuai ^{1,2}, [†] K. Siagl¹ V. Utsuno ^{7,8} P. Wagenknacht¹ and P. Vokovama¹

feeding said first 2^+ state. The analysis of the time structure of 168-keV γ -ray events following the ion implantation results in a half-life of $T_{1/2} = 90(^{+410}_{-50})_{\text{stat}}(\pm 40)_{\text{tran}}(^{+800}_{-70})_{\text{sys}}$ ns ("tran" corresponds to the uncertainty due to the transit time A1900, see below). We present an interpretation of the nature

Systematic uncertainty roughly twice that of statistical

More Excited State Half-lives - DSAM

PHYSICAL REVIEW C 109, L051303 (2024)

Letter

Evidence for octupole correlation in Z = 50 Sn isotopes: Spectroscopy of ¹¹²Sn

L. Mu (穆琳),^{1,2} S. Y. Wang (王守宇) [●],^{1,2,*} G. S. Li (李广顺),³ W. Z. Xu (许文政),^{1,2} Z. P. Li (李志攀),⁴ J. G. Wang (王建国),³ X. C. Han (韩星池),^{1,2} C. Liu (刘晨),^{1,2} A. Rohila,³ H. F. Bai (白洪斐),^{1,2} B. Qi (亓斌),^{1,2} R. N. Mao (毛若楠),⁴ Z. Q. Li (李志泉),^{1,2} X. Xiao (肖骁),^{1,2} L. Zhu (祝霖),^{1,2} X. D. Wang (王旭东),^{1,2} Y. J. Li (李英健),^{1,2} H. Jia (贾慧),^{1,2} R. J. Guo (郭睿巨),^{1,2} Y. D. Fang (方永得),³ Y. H. Qiang (强赟华),³ B. Ding (丁兵),³ M. L. Liu (柳敏良),³ F. F. Zeng (曾凡悲) ³ S. Guo (郭松) ³ Z. G. Gan (甘再国) ³ and X. H. Zhou (問小红)³

TABLE I. The present measured lifetimes τ , the previous lifetime results in Ref. [8], γ -ray energies (E_{γ}) , the relative intensities (I_{γ}) , and the reduced transition probabilities B(E2) and B(E1) for bands 1 and 2 in ¹¹²Sn. Uncertainties in the present measured lifetimes do not include the systematic errors that are associated with the stopping powers, which may be as large as ±15%. The relative intensity of the 1256 keV γ ray in Fig. 1 is taken as 100.

band	$I_i(\hbar)$	τ (ps)	τ (ps) [8]	E_{γ} (keV)	I_{γ}	$\sigma\lambda$	$B(\sigma\lambda)$ (W.u.)
1	12+		0.95 ± 0.20	744.3	30.6(3.0)	E2	
	14^{+}	$1.53^{+0.10}_{-0.03}$	1 75 + 0 40	709.0	27.7(2.7)	E2	49^{+1}_{-4}
			Statistic	al 3-10%	1.5(0.2)	E2	$6^{+2}_{-2} \\ 42^{+2}_{-3} \\ 4^{+1}_{-1}$
	16+	$1.30\substack{+0.08\\-0.05}$			20.9(2.6)	E2	42^{+2}_{-3}
				728.2	0.9(0.1)	E2	4^{+1}_{-1}
	18^{+}	$0.50\substack{+0.02\\-0.01}$	0		18.2(1.9)	E2	72^{+2}_{-2}
	20^{+}	$0.35^{+0.01}_{-0.01}$	Systema	itic ~15%	8.8(0.9)	E2	60^{+2}_{-2}
2	15-	$0.94_{-0.06}^{+0.04}$		007.0	10.8(1.1)	E2	$61^{+\bar{8}}_{-6}$
				845.1	0.9(0.2)	E1	$(5^{+2}_{-2}) \times 10^{-5}$
				706.7	2.2(0.3)	E2	24^{+8}_{-5}
	17-	$0.73\substack{+0.02 \\ -0.02}$		875.8	6.8(0.7)	E2	58_{-4}^{+4}
				869.8	0.8(0.1)	E1	$(9^{+2}_{-2}) \times 10^{-5}$
				283.5	0.3(0.1)	M1/E2	
	18-	$0.66\substack{+0.06\\-0.06}$		899.9	6.8(0.7)	E2	65^{+7}_{-5}
	19-	$0.56\substack{+0.04\\-0.04}$		961.5	3.5(0.4)	E2	49^{+6}_{-5}
				899.4	0.4(0.1)	E1	$(11^{+4}_{-4}) \times 10^{-5}$
	20^{-}	$0.46\substack{+0.02\\-0.02}$		974.0	2.2(0.2)	E2	63^{+3}_{-3}
	21-	$0.35_{-0.04}^{+0.05}$		1029.4	1.3(0.2)	E2	39^{+12}_{-10}
		0.01		890.2	0.3(0.1)	E1	$(24^{+16}_{-11}) \times 10^{-5}$
				400.4	0.5(0.1)	M1/E2	
	22^{-}	$0.36\substack{+0.04\\-0.04}$		997.7	1.4(0.2)	E2	71^{+9}_{-7}

Extended level structure of ⁵¹Cr with measured mean lifetimes of yrast states in agreement with shell-model calculations

PHYSICAL REVIEW C 109, 064311 (2024)

R. Chakrabarti [•],^{1,*} S. Mukhopadhyay [•],^{2,3,†} B. V. John,^{2,3} D. C. Biswas [•],^{2,3} S. K. Tandel [•],⁴ L. S. Danu,² Y. K. Gupta,^{2,3} B. N. Joshi,² [•]_{Go to page 1} apati,² S. Saha [•],⁵ J. Sethi,⁵ and R. Palit⁵

in the vicinity of the minimum. However, the systematic error that is associated with the modeling of the stopping power, and which can be as large as 10–15%, is not included in the quoted errors (Table II). The mean lifetime (τ) of the newly observed

Spin	Level energy	Lifetime τ (ps)				
(ħ)	E_x (keV)					
		Expt.	Theo. ^c			
$\frac{9}{2}$ - 2 1	1164.52(9)	0.11(1) ^a	0.08			
$\frac{11}{2}^{-1}$	1480.12(9)	0.79^{+35a}_{-6}	1.17			
$\frac{15}{2}^{-1}$	2255.53(13)	66.1(20) ^a	41.45			
$\frac{7}{2}^{-1}$	3181.14(16)	$0.08(2)^{d}$	0.08			
$\frac{9}{2}^{-1}$	3818.05(18)	0.31(3)	0.33			
$\frac{1}{2}^{-1}$	5564.47(21)	0.07(1)	0.06			
$\frac{1}{23} - \frac{1}{21}$	5714.08(20)	0.42(5)	0.27			
$(\frac{25}{2})_1^-$	8491.8(4)	0.11(3)	0.13			