
ENSDF Modernization

Not export controlled

Chris Morse

Outline

• Review of the modernization project

• Updates on the JSON format

• Other thoughts on modernization

2

How it started

3

The design of ENSDF

effectively envisions two kinds

of users:

1. Evaluators

2. Journal readers

Here be evaluators

Everyone else

How it's going

4

The design of ENSDF

effectively envisions two kinds

of users:

1. Evaluators

2. Journal readers

But there is a third class of

users which is effectively

unsupported:

computational users

Here be evaluators

Humans

Computers...?

Problems for non-experts

The 80-column ENSDF format is hard to use

• For the standard one-card records:
• No delimiters - must remember field widths

• No labels - must remember field locations

• Inconsistent units - must remember what/where

• Asymmetric errors almost never supported

• For the continuation items:
• Labels can be confusing​, often used inconsistently

• Units are not allowed

• Multiple ways to indicate limits or approximations

5

New paradigm

1. Evaluators interact with ENSDF via an editor (c.f. upcoming talk by D. Mason)

2. Human readers interact with ENSDF via PDFs

3. Computational users interact with ENSDF via new JSON format

Benefits:

• The representation of the data is decoupled from the data itself

• E.g. evaluators do not have to worry about format changes, the editor​ handles those details

• JSON enjoys widespread adoption in computing
• Much of the tool-development work is done for us

6

What is JSON?

• A highly structured data interchange format

• Governed by a simple set of rules:
• Data entries are key-value pairs

• Keys are (unique) strings

• Values can have three types:
• Basic: string, integer, number, boolean, NULL

• Object: A collection of key-value pairs enclosed in { }

• Array: An ordered list of values enclosed in []

• Trivially easy to deserialize

7

[

 {

 "institution": "University of Nowhere",

 "address": {

 "street": "University Ave",
 "number": 1,

 "zip": 12345

 },

 "presentAddress": true

 }
]

affiliations.json

JSON with Python

import json

with open("affiliations.json") as jsonfile:

 jsondata = json.load(jsonfile)

 for item in jsondata:

 print(item["institution"])

8

[

 {

 "institution": "University of Nowhere",

 "address": {

 "street": "University Ave",
 "number": 1,

 "zip": 12345

 },

 "presentAddress": true

 }
]

affiliations.jsondeserialize.py

ensdf@nndc:~$ python deserialize.py

University of Nowhere

9

Updates on the new format

The new files are available at https://www.nndc.bnl.gov/ensdf-json

NB: These are still considered a beta release

Organization

• Adopted dataset
• All other datasets (decays, reactions, comments)
• Header (Z, A, ...)
• Comments
• Various info​ (e.g. Q-values)
• Levels table

• Level properties (energy, spin-parity, ...)
• Cross-link to radiation tables (alpha, beta, gamma...)

• Radiation (alpha, beta, gamma...) tables
• Radiation properties (multipolarity, hindrance factor, …)
• Cross link to levels table

10

Datasets

There are currently 14 defined types of datasets in the JSON format

The number of datasets in each category is given in parentheses

11

adopted (3411) general reaction​ (7001)

alpha decay (831) isomer decay (589)

beta decay (2369) neutron capture (608)

charge exchange (140) prompt-particle decay​ (49)

coulomb excitation (391) general decay (266)

delayed-particle decay (280) transfer (2570)

fluorescence (200) comments (276)

Other updates

• Addressing feedback from NSDD meeting
• For each nuclide, the Adopted dataset holds all other datasets in a single file

• For error checking, individual quantities hold a string version of their numerical values

• XUNDL has been converted (11,066 datasets)
• Big thanks to Ben Shu for this effort

• Unit tests are being developed for the JSON schema validator

12

13

Other thoughts on modernization

Disclaimer: These aren't proposals, just brainstorming

Evaluating the ENSDF evaluation pipeline

14

Theory &

Experiment

Transport

Codes
User

Data

Processing
Verification

& ValidationEvaluation
Graphic shamelessly stolen

from Gustavo Nobre

ENSDF modernization goals

• Adopt a modern format for

easy tooling

• Convenient for users

• Enable expansion of the
format for emerging needs

Other opportunities?

• More thorough documentation

of individual data sources?

• Backporting/preserving

"bibliographic" info relevant to
ENSDF?

Documenting data sources

15

Adopted

β decay (d,p) . . .

• Currently, ENSDF is a two-

level system

• Adopted

• All other datasets

Documenting data sources

16

Adopted

β decay (d,p) . . .

Dataset 1 Dataset 2 . . .

• Currently, ENSDF is a two-

level system

• Adopted

• All other datasets

• We could add another layer
for individual publications

• Similar to XUNDL

• Potential benefits

• Data encapsulation

• Simple to import new
XUNDL datasets

Better bibliographies

17

Some nuclei generate many publications

How to review all this literature?

• Ideal case, you have records from last

evaluation. Not true for newer evaluators.

• Assume previous evaluation caught everything
relevant? Dangerous.

• Read everything; very inefficient!

Many references in an NSR search are not

relevant to ENSDF for a given nuclide. It would be
helpful to capture this information as part of a

mass-chain evaluation.

• One possibility: add new field to NSR entries to

mark a key number as (ir)relevant for a given

ENSDF evaluation

The end!

Questions? Comments?

18

	Slide 1: ENSDF Modernization
	Slide 2: Outline
	Slide 3: How it started
	Slide 4: How it's going
	Slide 5: Problems for non-experts
	Slide 6: New paradigm
	Slide 7: What is JSON?
	Slide 8: JSON with Python
	Slide 9: Updates on the new format
	Slide 10: Organization
	Slide 11: Datasets
	Slide 12: Other updates
	Slide 13: Other thoughts on modernization
	Slide 14: Evaluating the ENSDF evaluation pipeline
	Slide 15: Documenting data sources
	Slide 16: Documenting data sources
	Slide 17: Better bibliographies
	Slide 18: The end!

