Validation of $(n, n'\gamma)$ data for the GRIN project

Aaron M. Hurst amhurst@berkeley.edu

Department of Nuclear Engineering University of California, Berkeley

US Nuclear Data Program (USNDP) 2024 Duke University, North Carolina, USA

October 1 - 4, 2024

Table of Contents

1 Introduction

2 Neutron sources

- The IRT-M Baghdad Research Reactor
- FRM-II Research Reactor

The birth and fate of the neutron

Neutron interactions and contributions to σ_F in ⁵⁶Fe and ¹⁸²W as function of E_n

In ⁵⁶Fe, at $E_n = 25.3$ meV:

$$\sigma_F(n + {}^{56}\mathsf{Fe}; E_n) = \sigma(n, \gamma).$$

In ¹⁸²W, at $E_n = 25.3$ meV:

$$\sigma_F(n+^{182}W;E_n)=\sigma(n,\gamma).$$

▶ ∢ ⊒ ▶

Neutron interactions and contributions to σ_F in ⁵⁶Fe and ¹⁸²W as function of E_n

In ⁵⁶Fe, at $E_n = 14$ MeV:

 $\sigma_F(n+{}^{56}\mathsf{Fe};E_n)=\sigma(n,\gamma)+\sigma(n,n')+\sigma(n,p)+\sigma(n,2n)+\sigma(n,2p).$

In ${}^{182}W$, at $E_n = 14$ MeV:

$$\sigma_F(n+^{182} W; E_n) = \sigma(n, \gamma) + \sigma(n, n') + \sigma(n, np) + \sigma(n, 2n) + \sigma(n, 3n) + \sigma(n, 4n) + \sigma(n, 2np).$$

(日)

Neutron interactions and contributions to σ_F in ⁵⁶Fe and ¹⁸²W as function of E_n

In 56 Fe, at $E_n=0.86\sim 10$ MeV:

$$\sigma_F(n+{}^{56}\operatorname{Fe};E_n) = \sigma(n,\gamma) + \sigma(n,n') + \sigma(n,p).$$

In 182 W, at $E_n = 0.10 \sim 10$ MeV:

 $\sigma_F(n+^{182}\mathsf{W}; E_n) = \sigma(n,\gamma) + \sigma(n,n') + \sigma(n,2n).$

э

Reactor neutrons: ²³⁵U fission neutron spectrum

Different empirical relations have been proposed to describe the energy spectrum of reactor neutrons:

Watt:

$$N(E_n) = \sqrt{\frac{2}{\pi e}} \exp(-E_n) \sinh \sqrt{(2E_n)}$$

Modified Watt:

$$N(E_n) = A \exp(-bE_n) \sinh \sqrt{(cE_n)}$$

Maxwellian:

$$N(E_n) = 2\sqrt{\frac{E_n}{\pi k T^3}} \exp\left(\frac{-E_n}{kT}\right)$$

Best-fit parametrizations deduced for $^{235}\mbox{U}$:

- Modified Watt: A = 0.4527, b = 1.036, c = 2.29.
- Maxwellian:

kT = 1.290 MeV.

The IRT-M Baghdad Research Reactor FRM-II Research Reactor

The Baghdad IRT-M Reactor and $(n, n'\gamma)$ data

https://nucleardata.berkeley.edu/atlas/

- Compilation of energy-integrated inelastic neutron-scattering (n, n'γ) data disseminated in book format.
- ~ 7000 γ rays (E_γ and BR) from 105 samples: 76 natural and 29 isotopically-enriched targets.
- Ge(Li) viewing filtered fast-neutron beam line at the IRT-M Reactor: NRI, Baghdad, Iraq.
- Unique ⁵⁶Fe 847-keV $2^+_1 \rightarrow 0^+_{\rm gs} \ \gamma$ -ray normalization.
- Out-of-print book (out-of-print reactor!).
- Now Digitized database, open source dissemination.
- Project maintained on GitHub:

github.com/AaronMHurst/baghdad_atlas

3

A.M. Hurst et al., NIMA 995, 165095 (2021).

ヘロト ヘヨト ヘヨト

The IRT-M Baghdad Research Reactor FRM-II Research Reactor

Characterization the IRT-M Baghdad Reactor neutron flux

 $E_n < 1.5$ MeV (Maxwellian):

$$\phi_1(E_n) = 2A_1 \sqrt{\left(\frac{E_n}{\pi k T^3}\right)} \exp\left(\frac{E_n}{k T}\right).$$

 $E_n \ge 1.5$ MeV (Exponential):

$$\phi_2(E_n) = A_2 \exp(-\beta E_n).$$

Overall fit according to parametrization of IRT-M data:

$$\phi(E_n) = \phi_1(E_n) + \left[\frac{1 + \tanh[K(E_n - 1.5)]}{2}\right] (\phi_2(E_n) - \phi_1(E_n)).$$

 $\phi(E_n \ll 1.5 \text{ MeV}) \rightarrow \phi_1(E_n);$ $\phi(E_n \gg 1.5 \text{ MeV}) \rightarrow \phi_2(E_n).$

The IRT-M Baghdad Research Reactor FRM-II Research Reactor

Experimental Fe $(n, n'\gamma)$ γ -ray spectrum at the IRT-M

https://github.com/AaronMHurst/baghdad_atlas

Most important γ rays in ⁵⁶Fe from integral fission-neutron spectrum:

E_{γ} [keV]	$J_i^{\pi_i} o J_f^{\pi_f}$	I_{γ}	B _A
846.8	$\mathbf{2^+_1} \rightarrow \mathbf{0^+_{gs}}$	100	1.0
1238.3	$4^+_1 \rightarrow 2^+_1$	10.5(5)	0.105(5)
1810.8	$2^+_2 \rightarrow 2^+_1$	6.9(4)	0.069(4)

$$B_A = \frac{I_{\gamma}(E_{\gamma})}{I_{\gamma}(E_{\gamma} = 846.8)} = \frac{I_{\gamma}(E_{\gamma})}{100}.$$

- Well-characterized flux should reproduce measured experimental data.
- Determine flux-weighted cross section ($\langle \sigma_{\gamma} \rangle$) by convolving $\sigma_{\gamma}(E_n)$ with $\phi(E_n)$ and compare to corresponding *Baghdad Atlas* branching ratios.
- Parameterized Baghdad Reactor neutron-flux distribution yields $\langle \sigma_{\gamma} \rangle$ values that reproduces measured integral B_A to within $\sim 1.5\sigma$.

The IRT-M Baghdad Research Reactor FRM-II Research Reactor

Determination of $\langle \sigma_{\gamma}(E_{\gamma}=846.8~{ m keV}) angle$ in 56 Fe

- $\phi(E_n)$: Parameterized and adjusted for kT ($\phi(E_n \ll 1.5 \text{ MeV}) \rightarrow \text{Maxwellian}$; $\phi(E_n \gg 1.5 \text{ MeV}) \rightarrow \text{exponential}$).
- σ_γ(E_n): γ-ray production data as function of E_n from reaction model, e.g., CoH₃, EMPIRE, or a nuclear data library, e.g., ENDF.
- $W_{\gamma}(\theta = 90^{\circ}; E_n)$: Experimental anisotropy-attenuation coefficients, a_2 and a_4 (not always available!).

The IRT-M Baghdad Research Reactor FRM-II Research Reactor

Neutron-flux optimization: kT-adjustment to ⁵⁶Fe data

Adjust kT in χ^2 minimization to find optimal flux:

Reminder: the uncorrelated χ^2 :

$$\chi^{2} = \sum_{i=1}^{N} \frac{[y_{i} - f(x_{i})]^{2}}{\sigma_{i}^{2}}.$$

$$\sum_{i=1}^{N} \sum_{j=1}^{N} [B_{A_i} - B_{kT_i}] [V_{ij}^{-1}] [B_{A_j} - B_{kT_j}].$$

or in matrix notation:

$$\chi^2 = (\boldsymbol{B}_{\boldsymbol{A}} - \boldsymbol{B}_{\boldsymbol{kT}})\boldsymbol{V}^{-1}(\widetilde{\boldsymbol{B}_{\boldsymbol{A}}} - \widetilde{\boldsymbol{B}_{\boldsymbol{kT}}}).$$

- $V \Rightarrow$ covariance matrix $\because I_{\gamma}$ are correlated.
- $N = 3 \Rightarrow$ number of γ rays.
- ndf = 3 1 = 2.
- $\chi^2/\mathrm{ndf} \approx 0.35$ for $\mathrm{ndf} = 2$.
- Correlation coefficient in range $0 < \rho_{ij} \lesssim 0.75$ reproduces expected χ^2 /ndf consistent with kT = 0.155(30) MeV (cf. kT = 1.290 MeV for pure Maxwellian ²³⁵U fission.)

The IRT-M Baghdad Research Reactor FRM-II Research Reactor

Normalized fits cf. standard ²³⁵U neutron-flux distributions

Flux must satisfy normalization condition:

$$\int_{-\infty}^{+\infty} \phi^*(E_n)\phi(E_n)dE_n = 1$$

Expectation energies:

- Watt $\langle E_n \rangle = 2.00$ MeV.
- Modified Watt $\langle E_n \rangle = 1.98$ MeV.
- Maxwellian $\langle E_n \rangle = 1.94$ MeV.
- Parameterized Flux at IRT-M $\langle E_n \rangle = 0.88$ MeV.

< ロ > < 同 > < 三 > < 三

• Optimized Flux at IRT-M $\langle E_n \rangle = 0.63$ MeV.

kT-adjusted optimized neutron flux used to deduce flux-weighted quantities.

Optimized flux-weighted cross sections

Values for $\langle \sigma_{\gamma} \rangle$ and $\langle \sigma_{\gamma} \rangle_W$ deduced according to fitted flux using compound function with optimized kT = 0.155 MeV:

E_{γ} [keV]	B _A	B_{kT}	$\langle \sigma_\gamma \rangle \; [{\sf mb}]$	$\langle \sigma_{\gamma} \rangle_W$ [mb]	$\langle \sigma_{\gamma} \rangle_{\rm FRM}$ [mb]	$\langle \sigma_{\gamma} \rangle_{S} [{ m mb}]$
846.8	1.0	1.0	166(34)	143(29)	586(41)	521(106)
1238.3	0.105(5)	0.096(27)	15.9(31)	13.7(27)	58(5)	49.9(98)
1810.8	0.069(4)	0.061(18)	10.0(21)	8.7(18)	37(3)	31.7(66)

Our cross sections for $^{56}{\rm Fe}$ are consistent with the recent FRM-II measurement* upon scaling by $\langle E_n\rangle$ at the two facilities.

*Z. Ilic et al., J. Radioanal. Nucl. Chem. 325, 641 (2020).

The IRT-M Baghdad Research Reactor FRM-II Research Reactor

Why not take σ_{γ} directly from ENDF rather than a model?

- σ_γ cannot be extracted directly from ENDF.
- Results indicate: $\frac{\langle \sigma_{lev}^{CoH} \rangle}{\langle \sigma_{tot}^{CoH} \rangle} \approx \frac{\langle \sigma_{lev}^{ENDF} \rangle}{\langle \sigma_{tot}^{ENDF} \rangle}.$
- Reasonable to expect ratios of partial γ -ray production cross section to total inelastic cross section to also be in agreement, i.e., $\langle \sigma_{\gamma}^{\text{ENDF}} \rangle \approx \langle \sigma_{\text{tot}}^{\text{ENDF}} \rangle \frac{\langle \sigma_{\gamma}^{\text{COH}} \rangle}{\langle \sigma_{\zeta}^{\text{COH}} \rangle}$.

The IRT-M Baghdad Research Reactor FRM-II Research Reactor

Emanuel Chimanski's method for σ_{γ} extraction from ENDF

 \bigcirc

Aaron M. Hurst amhurst@berkeley.edu

USNDP 2024

Introduction Neutron sources

The IRT-M Baghdad Research Reactor

Determination of $\langle \sigma_{\gamma} \rangle$ derived from ENDF for ⁵⁶Fe γ rays

Fast-reactor flux: $\phi(E_n)$

ENDF cross section: $\sigma_{\gamma}(E_n)$

$\langle \sigma_{\gamma}(E_{\gamma}) \rangle = \frac{\int_{-\infty}^{E_{n}-\infty} \phi(E_{n}) \sigma_{\gamma}(E_{n}) dE_{n}}{\int_{-\infty}^{E_{n}-\infty} \phi(E_{n}) dE_{n}}$

1238.3 15.9(31)13.5 1810.8 10.0(21)9.4

Values of $\langle \sigma_{\gamma} \rangle$ deduced directly from ENDF are consistent with value from well-tuned CoH₃ reaction-model calculation.

The IRT-M Baghdad Research Reactor FRM-II Research Reactor

Flux-weighted validation for ${}^{28}Si(n, n'\gamma)$: 1779 keV

Source	$\langle \sigma_\gamma \rangle \; [{\rm mb}]$	$\langle \sigma_{\rm lev} \rangle$ [mb]	$\frac{\langle \sigma_{\rm lev} \rangle}{\langle \sigma_{\rm tot} \rangle}$
CoH	55.69	53.45	0.957
ENDF (estimate)	48.17	46.59	0.965
ENDF (derived)	49.40	_	_
Baghdad Atlas	47.1(94)	_	_

Integral measurement in agreement with 3 different validation results.

<ロト < 部ト < 注ト < 注</p>

The IRT-M Baghdad Research Reactor FRM-II Research Reactor

Flux-weighted validation for ${}^{32}S(n, n'\gamma)$: 2231 keV

Source	$\langle \sigma_\gamma \rangle ~[{\rm mb}]$	$\langle \sigma_{\rm tot} \rangle$ [mb]	$\langle \sigma_{\rm lev} \rangle$ [mb]	$\frac{\langle \sigma_{\rm lev} \rangle}{\langle \sigma_{\rm tot} \rangle}$
CoH	26.57	27.91	23.95	0.858
EMPIRE	26.49	28.80	23.78	0.890
ENDF (estimate)	21.67	22.76	19.98	0.878
ENDF (derived)	21.79	_	_	—
Baghdad Atlas	25.0(60)	—	—	—

Integral measurement in agreement with 4 different validation results.

- 740-keV γ ray resolved from doublet.
- 740-keV γ ray deexcites 862-keV level.

Integral measurement in agreement with 2 different validation results.

The IRT-M Baghdad Research Reactor FRM-II Research Reactor

Flux-weighted validation for ${}^{16}O(n, n'\gamma)$: 6129 keV

Derived σ_{γ} (6129) from ENDF

- $\langle \sigma_{\gamma} \rangle = 1.09(50)$ mb (Baghdad Atlas)
- $\langle \sigma_{\gamma} \rangle = 0.533 \text{ mb} (\text{ENDF})$
- 16 O γ rays hard to measure.
- Flux at energy needed is low.
- ENDF-derived σ_γ especially needed for cases like ¹⁶O which are also quite difficult to model cf. statistical Hauser-Feshbach approach.

The IRT-M Baghdad Research Reactor FRM-II Research Reactor

Validation using integral data for ²⁸Si, ³²S, ⁵⁶Fe, and ¹⁸⁶W

- Absolute flux-weighted quantities from CoH and ENDF reproduce known absolute integral I_{γ} data from the Baghdad Atlas.
- Normalization transitions and *weaker* transitions.
- Explore additional isotopes covering broader energy range.

Neutron flux at the Baghdad Research IRT-M Reactor is well characterized in region $0.862 \le E_n \le 5.0$ MeV.

Neutron sources Summarv

FRM-II Research Reactor

Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM-II)

Fast Neutron Gamma Spectroscopy (FaNGaS) instrument with neutron collimator, gamma counting and sample positioning system setup at the fission-neutron beamline (SR10) of the FRM-II.

Image: A matrix

FRM-II

E. [MeV]

The IRT-M Baghdad Research Reactor FRM-II Research Reactor

Validation using FRM-II Reactor flux

• FRM-II: $\langle E_n \rangle = 2.32$ MeV from fit cf. 2.3 MeV [Ilic 2020].

- Validation results for ⁵⁶Fe($n, n'\gamma$); $E_{\gamma} = 846.8 \text{ keV} (2^+_1 \rightarrow 0^+_{gs})$.
- Additional validation datasets from FRM-II: AI, Ti, Cu, In, Ca.

Introduction Neutron sources

The IRT-M Baghdad Research Reactor FRM-II Research Reactor

Comparison with ⁶³Cu (962 keV) and ⁶⁵Cu (1115 keV)

- ⁶⁵Cu(n, n'γ)
- $E_{\gamma} = 1115 \text{ keV}$
- $\langle \sigma_{\gamma} \rangle$ (FRM-II) = 404(39) mb

・ 同 ト ・ ヨ ト ・ ヨ ト

• $\langle \sigma_{\gamma} \rangle$ (ENDF) = 288 mb

Summary and outlook

- Two different fission-based neutron sources considered in validation of (n, n'γ) data from ENDF libraries for the GRIN project: Baghdad Reactor and FRM-II.
- Flux at Baghdad Reactor appears to be well-characterized in region $0.862 \le E_n \le 5.0$ MeV.
- Validation approach utilizes γ-ray production data from both reaction-model calculations as well as ENDF-derived γ-ray data to deduce: (i) calculated; (ii) estimated; and (iii) library-derived flux-weighted γ-ray production cross sections that can be compared to integral measurements from reactor facilities.
- Additional low-energy data needs to be considered to help constrain low- E_n tail to better describe the flux in the region $E_n < 862$ keV at the Baghdad Reactor.
- Preliminary assumption of Maxwellian (kT = 1.55 MeV; $\langle E_n \rangle = 2.32$) does reasonable job of reproducing measured ⁵⁶Fe data at FRM-II.
- More work needed for other isotopes (e.g., ^{63,65}Cu) and better description of flux.
- Emanuel developed script to extract γ -production data from ENDF libraries \Rightarrow disseminate as part of the FUDGE library in future?

< ロ > < 同 > < 三 > < 三 >