

Enabling an In-line Gamma-ray Cascade for Neutron Capture and Inelastic Reactions

Emanuel Chimanski (echimansk@bnl.gov) + GRIN collaboration US Nuclear Data Program Annual Meeting 2024

f in @BrookhavenLab

not export controlled

GRIN- Gamma Rays Induced by Neutrons

 A project to help improving gamma-ray data libraries and enable inline gamma cascades in transport codes

Target users:

- **"Traditional"** users call for a precise particle-γ spectrum to perform material identification.
- "Event-by-event" users need the correlations between scattered neutrons, gammas emitted from nuclear de-excitations. Current evaluated data in ENDF libraries are not sufficient and must be extended.

- Capture, Inelastic and Decay Gammas Nuclear fingerprints
- Subject to
 - Thorough experimental knowledge;
 - Precise models and evaluations;
 - Incorporation of data into evaluated files;

Neutron Induced Reactions and Gamma-Ray cascades

 Inelastic reactions involve target (A) states while capture populates compound system (A+1) levels

Inelastic Reactions

What is in ENDF and what are we missing?

At a given incident Energy En:

- Cross sections
- Outgoing particle spectra (angle (usually isotropic))

What is in ENDF and what are we missing?

- ENDF can (that does not mean it does) provide everything needed for the cascade up to 39 excited levels;
 - Branching ratios are also stored up to the 39th level
- After 39 discrete states (or above E_c), ENDF uses a continuum (MT91) as "one fake level".
 - No branching ratio is given for continuum

What is in ENDF and what are we missing?

- In a typical reaction calculation:
 - Discrete levels and BR come from ENSDF/RIPL (up to E_c)
 - Pseudo-Continuum is discretized
 -> Level Density Models
 > DCFs for transitions
 - -> PSFs for transitions
- Although calculations are done right, information is left behind when ENDF is compiled

- ENDF does not have a detailed information of level population above E_c
- ENDF does not know how discrete levels are fed from the continuum

How is Geant4 performing ?

 ${}^{16}\mathrm{O}(n,n'\gamma) \rightarrow \,n \,+\, {}^{16}\mathrm{O}_{e2}$

 ${}^{16}\mathrm{O}_{e2} \rightarrow {}^{16}\mathrm{O} + \gamma.$

Krystine Rodriguez (UPR – Puerto Rico)

*(more during her talk at DNP2024)

- Simple monoisotopic target but a neutron flux data from the Baghdad (IRT-M) (²³⁵U fission)
- Use Baghdad Atlas: Relational database for (n, n'γ) with elemental samples

We know how to make these calculations: we just need to store some extra info

Generalized Nuclear Data Structure (GNDS):

- Less restricted

– Some formats can be naturally extended to incorporate the "pseudocontinuum" information

GRIN project: People from different parts of the nuclear data pipeline

In-line Gamma-Ray cascades

- As test case: We work on top of the ENDF-CIELO (IAEA) evaluation for ⁵⁶Fe
- Details extracted from calculation (EMPIRE reaction code)

In-line Gamma-Ray cascades

Inelastic cascades: (n,n'γ)⁵⁶Fe

- We used the CIELO/EMPIRE evaluation for ⁵⁶Fe All levels, populations and branching ratios (including bins in the continuum) were extracted and compiled in a test file
- By using a simple python Monte Carlo sampling we were able to reproduce empire inelastic gamma-ray data results

Neutron Capture Cascade

What is in the ENDF and how transport codes handle it?

- In ENDF, for a given incident energy:
 - Capture Cross Section
 - List of gammas

Three different types of $\boldsymbol{\gamma}$

- Primary:
 Emissions from the capture state to (known) the discrete levels.
- Discrete: - →
 Emissions from discrete to discrete levels.
- Continuum: Histogram of Eγ emissions involving the continuum

* I could list the reasons of how bad sampling this can be (but better if I show ...)

GEANT4 Simulations with ENDF/B and the Capture Gamma-rays

fEvent	primaryParticle	primaryEnergy	scattered Primary Energy	secondary Particle	secondaryEnergy	processName
0	neutron	2.50E-08	0	C13	0.00100	nCapture
0	neutron	2.50E-08	0	gamma	4.94633	nCapture
1	neutron	2.50E-08	0	gamma	4.94651	nCapture
1	neutron	2.50E-08	0	gamma	4.94651	nCapture
1	neutron	2.50E-08	0	C13	0.00255	nCapture

In **GEANT4**

- Multiple flags to choose and simulate the reaction differently;
 - some provide better results for a few isotopes

When using ENDF/B inputs only:

- <u>Geant4 does not distinguish primaries from</u> secondaries even when ENDF/B does
- No gamma-ray correlations
- Energy is not conserved event-by-event

Michael Allen (Texas A&M) & Mauricio Cerda (Texas Tech) + Andrea Mattera (NNDC)

Inline Neutron Capture Gamma-ray Cascade

With our new file:

 We already have all levels (including the discretized bins for the pseudocontinuum)

Capture State:

- Excitation energy: easily computed with E_{cs} = E_n + S_n
- Spin and Parity: we store them

$$J_{CS} = J_{GS} + I + \frac{1}{2}$$

 $\pi_{CS} = \pi_{GS} (-1)^{I}$

- Match Capture State with a level in the continuum:
 - ENSDF-TH/EGAF for primaries
 - Models don't do a good job on predicting primaries

In our new GNDS

- All levels are included
 - do not affect current applications or transport codes
 - later can be officially incorporated
- A pseudo "POPs" data structure for "theory levels":
 - simple table to reduced the size of file
- Capture and inelastic populated states have a new data structure

```
<captureLevelProbabilities>
```

```
<captureLevelProbability label="0" probability="1.0" spin="0.5" spinUnit="hbar"
parity="1"</pre>
```

```
<columnHeaders>
```

```
<column index="0" name="finalLevel" unit="" types="label"/>
```

```
<column index="1" name="probability" unit=""/></columnHeaders> <data>
```

```
Fe570.25Fe57_e10.29Fe57_e36e-2Fe57_e80.0111Fe57_e100.099Fe57<e11</td>0.096
```


</data></captureLevelProbability></captureLevelProbabilities>

How can we handle this file that has everything?

GIDI+ with new **GNDS**

LLNL / gidiplus Public

https://github.com/LLNL/gidiplus

- GIDI+ works as a sampler:
 - Produces gamma-ray cascades whenever a neutron capture (inelastic) event is called

Example of a capture cascade event on ⁵⁶Fe from GIDI+

user id # ● intid energy νх v y νz Event: 0 reaction 72: Fe57 + photon [inclusive] 6 100000000 6.01882403e+00 3.88002726e+00 9.35009794e-01 4.50526223e+00 product: 6 100000000 1.26049700e+00 -1.24690747e+00 -1.03422628e-01 1.52899315e-01 product: 6 100000000 3.52346000e-01 -2.28763952e-01 2.12096093e-01 1.63798674e-01 product: product: 26057 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 -1 GRIN intermediate residual: Fe57 e10

- The sum of each gamma-ray energy in the cascade provides the excitation energy (energy conservation!)
- Users don't need to think about model parameters or experimental primaries

*** Manuscript in preparation

What if there is a high energy level in ENSDF and not in ENDF? We can easily embed levels

A discrete level above E_c can be placed (embedded) In the pseudo-continuum

GIDI+ as an event generator

- GIDI+ uses GNDS rather than legacy ENDF files
- Our new GNDS files contain all the inputs needed for in-line cascade simulation for both capture and inelastic

GIDI+ has its own broomstick like code but can work in other transport codes (Mercury, Geant4, OpenMC (Hunter + @ RPI))

- ✓ We need all levels (including "bins" for the continuum)
- $\checkmark\,$ We can have discrete levels above E_c embedded in the continuum
- Population of each level as a function of incident energy
 - Capture is "easy" since one or two states are populated (s wave)
 - Inelastic is more complicated with a distribution of populated states

Highlights:

- GIDI+ uses GNDS rather than legacy ENDF files for correlated gamma emissions. Our new GNDS files contain all the inputs needed for in-line cascade simulation.
- GIDI+ has its own "broomstick" like simulation
- We would like to make sure ICCs are properly included
- We can embed discrete levels in the continuum:
 a discrete level above E_{cut} and its branching ratios can be incorporated (replacing a kind = "continuum" level by the given discrete from ENSDF)
- As we build these new files, we have spotted a few typos in ENSDF-TH (communicated to ENSDF GRIN people)
- We are showing it works! (project with RPI (Yaron, Ian) on benchmarking (n,g)):
 - Users need this capability for many other isotopes!

Reach out if you are interested echimansk@bnl.gov

Many thanks to

+ Donnie Manson (NNDC)

NN Hidden Layers (nodes)	Loss (after 20 cycles)
(7, 2)	23147.57
(7, 5, 3)	2363.67
(9, 8, 7, 6, 5, 4, 3, 2)	17.30

Ana Pereira (FSU)

+ Andrea Mattera (NNDC)

Krystine Rodriguez (UPR – Puerto Rico)

Michael Allen (Texas A&M) & Mauricio Cerda (Texas Tech)

NUCLEAR SCIENCE <u>8 te part m ent</u> Untroum nuclear 8 te

Thank you

