US Nuclear Data Reaction Working Group discussion topics

Toshihiko Kawano and Hye Young Lee Los Alamos National Laboratory

USNDP Annual Meeting 2024 Oct. 1st – Oct. 4th, 2024 Triangle Universities Nuclear Laboratory (TUNL), Durham, NC

Nuclear Reaction Theory, Modelling, and Evaluation for ENDF

- Primary users of nuclear data are:
 - National security and nuclear safety
 - Nuclear energy production and applications
 - fission and fusion
 - Other applications or fundamental science
 - medical, astrophysical, space, ...
 - analysis of experimental data, understanding of physical phenomena
 - ...
- Nuclear reaction theories, which are essential for producing reliable nuclear data, include:
 - Direct reactions
 - Compound reactions
 - R-matrix for resonances, and statistical theories
 - Pre-equilibrium reactions
 - Modelling of them also includes other ingredients (optical potential, level density, strength function, etc)
- · Other tools to reinforce evaluations
 - statistical analysis of experimental data

Current Status? Significant Deficiencies?

- · Hauser-Feshbach model codes play the central role
 - Are they good enough?
 - TALYS, CoH₃, EMPIRE, YAHFC, CCONE, ...
 - What are the weaknesses?
 - predictive fission calculation still unsatisfactory
 - transitional mass and energy ranges from resolved to unresolved region
 - composite particle (e.g. deuteron) induced reactions
 - energies above 20 MeV
 - ...
- · Production of evaluated data files
 - Extract all relevant information from the codes and store in the ENDF files
 - these tools are often private, not so generalized
 - evaluated files are often not reproducible by others
 - technology transfer to the next generation
 - Demands for nuclear data other than neutron-induced reactions
 - · Fission products, photonuclear reaction, beta-delayed neutron and photons, and so on
 - Charged particle induced reactions for medical isotope production applications and space applications

Experimental efforts in improving reaction data

- Most organized efforts are in neutron-induced reaction measurements

 neutron facilities: LANSCE, RPI, Ohio U., UC-Berkeley, TUNL, U Notre Dame, U. Kentucky, NTOF, Gelina, ILL, etc.
 charged particle facilities: UC-Berkeley, ATLAS, FRIB, TAMU, Ohio U, U Notre Dame, FSU, etc.
- Direct measurements to deduce cross sections and outgoing particle information – absolute, ratio to standards
- Indirect measurements to provide nuclear inputs for calculating cross sections level density, photon strength function, nuclear mass, ...
- Measured nuclear structure information
 - -- level energies & spin/parities, branching ratios, decay schemes, ...
- Coverage to improve reaction data quality becomes large
- Uncertainties required by application govern experiment plans, to set cost, timeline, facility, detection choice, analysis methods, ...
 - -- Encourage more collaborations among facilities to share capabilities and resources
 - -- Direct and Indirect measurements are complementary

