

The EICROC Project

<u>Objective</u>: **Development** and **Characterization** of an **ASIC EICROC (32 x 32)** able to read out the new generation of pixelated (500 x 500 μm²) silicon sensors: **AC-LGAD** (Low-Gain Avalanche Diode) coupled **AC** for the **Electron Ion Collider** (EIC)

1st intention: optimized for Far Forward detectors: Roman Pots

Perspectives: to read out AC-LGAD sensors implemented in other ePIC detectors, e.g. OMD, Forward TOF, ...

Stepping up through succesive ASIC iterations to control performances fulfilling ePIC detector requirements

EICROCO prototype (16 channels; 4 x 4): under characterization since mid '23

- eRD109 Monthly Report, August 1st, 2024 - Dominique Marchand

- PIC « Electronics & DAQ Review », Christophe de La Taille, July 10-11, 2024
- eRD109 FY24 report & FY25 proposal:

Institution	Resource	FTE (%)	Budget (k\$)
IJCLab	Senior associate scientist	70	0 (in-kind)
	Senior scientist	35	0 (in-kind)
	Senior scientist	20	0 (in-kind)
	Research engineer	25	0 (in-kind)
	Post-Doc	100	0 (in-kind)
	Fabrication of testboards and associated components	-	25
OMEGA	Senior research engineer	25	0 (in-kind)
	Senior research engineer	20	0 (in-kind)
	Research engineer	15	0 (in-kind)
	Research engineer	50	0 (in-kind)
	Assistant engineer	20	0 (in-kind)
	contribution to <u>EICROC</u> / <u>CALOROC</u> engineering run	-	70
	BGA substrate tooling for CALOROC	-	30
CEA/Irfu	Senior research engineer	30	0 (in-kind)
Total	_	-	125

EICROCO testing meeting, Adrien Verplancke (OMEGA), Arzoo Sharma (IJCLab), July 19th, 2024

EICUG/ePIC collaboration meeting/AC-LGAD Workfest, Adrien Verplancke (OMEGA), July 26th, 2024

- EICROCO testing meeting, Adrien Verplancke (OMEGA), Arzoo Sharma (IJCLab), July 19th, 2024
- EICUG/ePIC collaboration meeting/AC-LGAD Workfest, Adrien Verplancke (OMEGA), July 26th, 2024

Main Update: Issue preventing TDC & ADC measurements FIXED mid-July.

The EICROC0 chip receives a 160MHz clock from the FPGA. This 160 MHz colcks gets converted internally to a 40MHz. An issue with optional clock delay blocks on the FPGA was found mid-July that was adding a significant jitter to the clock, which disturbed all TDC & ADC measurements.

This issue was fixed <u>updating the firmware</u>.

(«2023» & «2024» EICROC0 PCBs can be equally exploited with the updated firmware)

TDC & ADC measurements:

no more show stopper, ramping up on fine tuning investigations

- Boards without an AC-LGAD sensor: #2.1 and #2.2 (updated «2024» PCB) $c_D = 11$ (additional 750 fF @ preamp input), $c_P = 1$
- Boards with an AC-LGAD sensor wire-bonded by IPHC Strasbourg (France): #2.3A and #2.3B (updated «2024» PCB)

 c_{D} = 00 (no additional capacitance @ preamp input), c_{P} = 1

+ boards without AC-LGADs («2023» PCB)

+ 1 boards with an AC-LGAD sensor wire-bonded by BNL («2023» PCB)

Board #2.2 (with sensor depleted, HV = -100V; 1 μ A) @ 5 fC

S-Curve corrected by means of individual pixel DACs

A. Verplancke et al. (OMEGA)

Minimum charge detected

A. Verplancke et al. (OMEGA)

EICROC Project: EICROC0 recent results (OMEGA, IJLab)

S-Curve 50% versus injected charge (channel #0)

TDC Jitter versus injected charge

A. Sharma et al. (IJCLab)

TDC Jitter Channel 0

A. Verplancke et al. (OMEGA)

Measurement	ASIC Without Sensor	ASIC With Sensor	
Min. detected charge	3.5 fC	7.65 fC	
Noise value	0.26 fC	0.66 fC	
TDC Jitter @ 10 fC	17.5 ps	33 ps	
TDC Jitter @ 20 fC	12.5 ps	20 ps	
	Impact of the sensor will be further investigated		

ADC studies (preliminary)

Board #2.1 (no sensor, channel #1) No clock gating, pedestal subtraction of DAC = 1

ADC response linearity

<u>Cross-talk measurements underway:</u> two neighbors investigated (2 and 5)

Different amplitude from 1 to 61 (step = 4)

For very small signal: no clear xtalk but going to the largest charge, a negative signal appears. If the minimum of the amplitude of the ADC scales linearly with the injected charge as expected for XTalk, Typically 1 ADC amplitude of Xtalk for a signal of 60 ADC => between 1 and 2 % Xtalk, quite in agreement with previous Probe Preamp. measurements (2023)

L. Serin et al. (IJCLab)

ADC studies (preliminary)

Board #2.3B (with sensor, channel #0) No clock gating, pedestal subtraction of DAC = 1

A. Verplancke et al. (OMEGA)

- Issue preventing acurate TDC & ADC measurements FIXED by means of firmware update
- Each EICROCO components (Preamp., TDC and ADC) works as expected by design
- Now start TDC & ADC fine tunings with & without an AC-LGAD sensor
- Infrared laser measurements foreseen shortly at BNL
- > Thorough characterization of boards with an AC-LGAD sensor wire-bonded
- Beta source measurements foreseen after the summer (IJClab, BNL)
- Perspectives:
 - EICROC0 bump-bonded to an AC-LGAD, prestation)
 - Characterization of electronics rsensor (flip chip to be provided by BNL)
 Wire-bonding of hybrids onto uodated PCBs (IPHCesponses (PA, TDC, ADC)
 - Beta Source (evaluation of charge sharing) & IR laser (evaluation of spatial resolution)
 - Test beam in Spring 2025 (submitted to ePIC collaboration)

- **EICROCO** is a testbeam prototype => sensor characterization
 - Present power ~2 mW/ch + 4*20 mW « analog probe preamp »
 - ADC power + shaper/driver to be reduced from ~1 mW to 100 μW/ch
 => EICROCOA (Submission @ end of 2024)
- **EICROC1** will address larger dimensions more likely 8x32
 - Address floor planning and power distribution
 - Option for selective readout : hit + 8 neighbouring channels
 - Status : layout started based on EICROCO, adding more testability
 - Still EICROCO-like readout
 - Submission @ end of 2024 (together with EICROCOA & CALOROC)
- EICROC2 final size : 32x32

Thank you for your attention

The EICROC Project French team: F. Bouyjou, S. Conforti, E. Delagnes, P. Dinaucourt, F. Dulucq, B.-Y. Ky, C. de La Taille, D. Marchand, C. Munoz, N. Seguin-Moreau, A. Sharma, L. Serin, A. Verplanck

- eRD109 Monthly Report, August 1st, 2024 -