Mass effects in the Higgs q_T **spectrum**

Title Rebecca von Kuk
 Title Rebecca von Kuk
 Title Rebecca von Kuk

DESY

BNL seminar Oct. 10 2024

Presentation

European Research Council Established by the European Commission

Outline .

Introduction

-
-
-

• q_T factorization and resummation in SCET
• Higgs q_T spectrum
• measurement of the Yukawa coupling
Quark initiated Higgs production

• N³LL' + aN³LO prediction for $\bar{b}bH$, $\bar{c}cH$ and $\bar{s}sH$

$\boldsymbol{y_b}\ \boldsymbol{y_t}$ interference in gluon fusion

- state of the literature
- different regimes
- cancellation of endpoint divergences

Summary

Kinematic distributions

- ●kinematic distributions and differential cross sections are particularly interesting
- for Higgs production: most Higgs bosons are produced with small transverse momentum q_T
- ●in this kinematic region the fixed-order perturbative expansion is no longer valid
- **cross section diverges and needs to be resummed!**

Large logs

• consider cross section for $q_T \ll Q = m_H$

$$
\sigma(q_T) \sim 1 + \frac{\alpha_s}{4\pi} \left[c_{12} \ln_{q_T/Q}^2 + c_{11} \ln_{q_T/Q} + c_{10} \right]
$$
 NLO
+
$$
\sqrt{\left(\frac{\alpha_s}{4\pi} \right)^2 \left[c_{24} \ln_{q_T/Q}^4 + c_{23} \ln_{q_T/Q}^3 + c_{22} \ln_{q_T/Q}^2 + \dots \right]}
$$
 NNLO
+
$$
\left(\frac{\alpha_s}{4\pi} \right)^3 \left[c_{36} \ln_{q_T/Q}^6 + c_{35} \ln_{q_T/Q}^5 + c_{34} \ln_{q_T/Q}^4 + \dots \right]
$$
 N³LO

• for $q_T \to 0$ logs become large $\alpha_s \log^2(q_T/Q) \approx 1$

● switch from fixed-order to logarithmic counting

Large logs

 \bullet consider cross section for $q_T \ll Q = m_H$

$$
\sigma(q_T) \sim 1 + \frac{\alpha_s}{4\pi} \left[c_{12} \ln_{q_T/Q}^2 + c_{11} \ln_{q_T/Q} + c_{10} \right] + c_{10} \left[c_{24} \ln_{q_T/Q}^4 + \left(\frac{\alpha_s}{4\pi} \right)^2 \left[c_{24} \ln_{q_T/Q}^4 + c_{23} \ln_{q_T/Q}^3 + c_{22} \ln_{q_T/Q}^2 + \cdots \right] + \left(\frac{\alpha_s}{4\pi} \right)^3 \left[c_{36} \ln_{q_T/Q}^6 + c_{35} \ln_{q_T/Q}^5 + c_{34} \ln_{q_T/Q}^4 + \cdots \right]
$$

\nLL
\nNLL

● switch from fixed-order to logarithmic counting

Large logs

- large logs appear and spoil convergence of perturbative series
- ●**resum logs to all orders to restore convergence!**

q_T factorization

● SCET factorization theorem separates scales at cross section level

$$
\frac{\mathrm{d}\sigma}{\mathrm{d}q_T} = H(\mu_H) \times B(\mu_B) \otimes B(\mu_B) \otimes S(\mu_S) \left[1 + \mathcal{O}\left(\frac{q_T^2}{m_H^2}\right)\right]
$$

- Hard function: virtual contributions on hard scale
- Beam function: collinear radiation
- Soft function: soft, isotropic radiation

Resummed cross section

- solve RGE for $H(\mu_H)$, $B(\mu_B)$ and $S(\mu_S)$ to resum logs
- \bullet resummation generates Sudakov peak for $q_T \ll Q$
- for $q_T \sim Q$ the fixed-order prediction is sufficient
- transition connects fixed-order and resummed prediction

Higgs q_T spectrum

- allows to access quark Yukawa couplings from Higgs production
	- ‣complementary to measuring it from the final state
- ●initial state discrimination [Ebert et al. '16, Bishara at al. '16]
	- \blacktriangleright the q_T spectra of gluon fusion and quark-initiated Higgs productions have different shapes
- ●**goal: combine different prediction and fit the Yukawa coupling**

$$
\frac{d\sigma(pp \to H)}{dq_T} = y_t^2 \frac{d\sigma_{tt}}{dq_T} + y_t y_b \frac{d\sigma_{tb}}{dq_T} + y_b^2 \frac{d\sigma_{bb}}{dq_T} + (y_b \to y_c)
$$

Higgs q_T **spectrum**

$$
\frac{d\sigma(pp \to H)}{dq_T} = y_t^2 \frac{d\sigma_{tt}}{dq_T} + y_t y_b \frac{d\sigma_{tb}}{dq_T} + y_b^2 \frac{d\sigma_{bb}}{dq_T} + (y_b \to y_c)
$$

The q_T **spectrum for quark initiated Higgs production.**

measurement of y_b

- \bullet the q_T spectra of bbH , $\bar{c}cH$ and $\bar{s}sH$ have different shapes
- precise prediction for $q\bar{q} \to H$ allows for Yukawa fit from the initial state for the quark induced channels
- ●for NNLL+NLO the uncertainties overlap!
	- ▶ Insufficient precision to distinguish them
- ●**goal: N3LL**' **+ aN3LO prediction**

measurement of y_b

- \bullet the q_T spectra of bbH , $\bar{c}cH$ and $\bar{s}sH$ have different shapes
- precise prediction for $q\bar{q} \to H$ allows for Yukawa fit from the initial state for the quark induced channels
- ●for NNLL+NLO the uncertainties overlap!
	- ▶ Insufficient precision to distinguish them
- ●**goal: N3LL**' **+ aN3LO prediction**

Resummation.

Resummation at N3LL'

- \bullet resummation with SCETlib in b_T space [Billis, Ebert, Michel, Tackmann]
- ingredients for N³LL' resummation
	- ▶ Hard function at N³LO [Gehrmann, Kara`14, Ebert, Michel, Tackmann `17]
	- ▶ Beam function at N³LO [Luo, Yang, Zhu, Zhu`19, Ebert, Mistelberger, Vita `20]
	- **Soft function at N³LO** [Liu, Zhu, Neill`16, Li, Zhu `16]
	- ▶ 4-loop cusp and 3-loop non-cusp anom. dim.

[Henn, Korchemsiky, Mistelberger `20, v. Manteuffel, Panzer , Schabinger`20]

[Li, Zhu `16, Valdimirov`16]

• for $q_T \sim m_H$ use hybrid profile scales to turn off resummation

Fixed order prediction.

qqH + **jet prediction**

- \bullet LO₁ analytic expression implemented in SCET1ib
- \bullet NLO₁ implemented qqH in MC event generator Geneva [Alioli et al. '14]
	- ▶ Use OpenLoops matrix elements [Bucciconi et al. '19]
- aNNLO₁: approximate something that could be NNLO₁

Results.

N^3 **LL**^{\prime} + aN³**LO** prediction for $\bar{q}qH$

Results.

N^3 **LL**^{\prime} + **aN**³**LO** prediction for $\overline{q}qH$

• note: plot is cut at 5 GeV $bb \rightarrow H$ (13 TeV) $\mathbf{0.030}$ MSHT20nnlo, $m_H = 125$ GeV \bullet using factorization theorem for massless \gtrsim 0.025 **SCETLIB** quarks $N^3LL'+aN^3LO$ 0.020 $[{\bf p} {\bf b}]$ $N^3LL+NNLO$ ▶ b-quark mass effects become relevant 0.015 NNLL+NLO $\sqrt{q}q_T$ **NLL** ▶ need to include mass effects! 0.010 $\frac{1}{d}$ 0.005 • not an issue for c and s because they are much lighter0.000 10 20 30 80 40 50 60 70 q_T [GeV]

Results.

N^3 **LL**^{\prime} + aN³**LO** prediction for $\bar{q}qH$

[Cal, RvK, Lim, Tackmann. '23]

●**theory precision high enough uncertainties to allow clear distinction!**

bottom-mass effects in gg **-H.**

-
-
-
-
-
-
-

bottom mass effects in gluon fusion

- now: consider $gg \to H$ with massive bottom-quark loop
- usually consider top-quark loop since $m_t \gg m_q$
- bottom loop gives $\mathcal{O}(5-10\%)$ contribution from interference with top-quark
- ●lighter quarks only make up for a few percent of the Higgs cross section

Notation and conventions.

Lightcone momenta

 \bullet use lightcone coordinates $p = (p^+, p^-, p_\perp)$

• power-counting: small parameter $\lambda = m_b/m_H \ll 1$

- \blacktriangleright collinear $p^\mu \thicksim (\lambda^2,1,\lambda)$
- \blacktriangleright anti-collinear $p^\mu \thicksim (\,1,\lambda^2,\lambda)$
- \blacktriangleright soft $p^\mu \thicksim (\lambda,\lambda,\lambda)$
- \bullet Higgs minus momentum q^+ = ω_n

 \bullet fraction of total minus momentum: $\xi = k_2^-/\omega_n$

$$
n^{\mu} = (1, 0, 0, 1), \quad \bar{n}^{\mu} = (1, 0, 0, -1), \quad p^{\mu} = \frac{n^{\mu}}{2} p^{-} + \frac{\bar{n}^{\mu}}{2} p^{+} + p_{\perp}^{\mu}, \quad p^{-} = \bar{n} \cdot p, \quad p^{+} = n \cdot p
$$

Mass effects in $q\overline{q}$ \rightarrow H .

so far: form factor $F(m_b,m_H)$

• subleading power factorization and resummation of form factor for $m_q \ll Q$

[Liu, Neubert '19,Liu, Mecaj, Neubert, Wang '20,

 \bullet $F(m_b,m_H)$ depends on two scales

• renormalization and treatment of endpoint divergences is active field of research

[Beneke, Ji, Wang '24]

Mass effects in $gg \rightarrow H$ **.**

Notation LO NLP diagram

Endpoint divergences at LO.

• regulate endpoint divergences just like rapidity divergences

● example: LO NLP collinear contribution:

● is **not** a rapidity divergence!

 \bullet the "true" rapidity divergence (related to q_T spectrum) comes later from the phase space integral over $k!$

LO NLP contribution

$$
\int d\xi \left(\frac{1}{\xi} \left| \frac{\xi}{\nu} \right|^{-\eta} + \frac{1}{1-\xi} \left| \frac{1-\xi}{\nu} \right|^{-\eta} \right) \int e^{-\xi} \int_{\mathcal{B}^{\beta}}^{\mathcal{B}^{\beta}} \frac{\xi}{B_{n,\bar{\chi}_{\chi}}} \times 2
$$

+
$$
\int d\ell^+ d\ell^- \frac{1}{\ell^+\ell^-} \left| \frac{\ell^+\ell^-}{\nu} \right|^{-\frac{\eta}{2}} \left| \sinh y_{\ell} \right|^{-\eta} \int_{\mathcal{B}}^{S_{\bar{\psi}\psi}^{(0)}} = \mathcal{O}(\eta^0)
$$

• all endpoint divergences cancel between soft and collinear contributions!

Mass effects in $q\bar{q}$ \rightarrow H

so far: form factor $F(m_b,m_H)$

• subleading power factorization and resummation of form factor for $m_q \ll Q$

[Liu, Neubert '19,Liu, Mecaj, Neubert, Wang '20,

 \bullet $F(m_b,m_H)$ depends on two scales

• renormalization and treatment of endpoint divergences is active field of research

```
[Beneke, Ji, Wang '24]
```
Mass effects in $gg \rightarrow H$ **.**

so far: form factor $F(m_b,m_H)$

• subleading power factorization and resummation of form factor for $m_q \ll Q$

[Liu, Neubert '19,Liu, Mecaj, Neubert, Wang '20, Liu, Neubert, Schnubel, Wang '22]

- \bullet $F(m_b,m_H)$ depends on two scales
- renormalization and treatment of endpoint divergences is active field of research

[Beneke, Ji, Wang '24]

now: q_T **spectrum d** σ (q_T, m_b, m_H)

- \bullet q_T measurment adds additional scale
	- \rightarrow three scale problem!

- \bullet add emission $k_T{\thicksim} q_T$
- \bullet still have $m_q \ll Q$, but k_T can have different scalings

Different regimes.

consider different scalings of k_T

 \bullet emission k_T introduces additional scale to the calculation

Different regimes.

consider different scalings of k_T

 \bullet emission k_T introduces additional scale to the calculation

- \bullet only valid in a very small region of the q_T spectrum
- \bullet use standard factorization for q_T resummation with n_f = 4 massless flavors

$$
\frac{d\sigma_{y_t y_b}}{dq_T} = 2\text{Re}[C_{ggt}^*(m_H) C_{ggb}(m_b, m_H)] B_g(q_T) \otimes B_g(q_T) \otimes S_{gg}(q_T)
$$

- \bullet only valid in a very small region of the q_T spectrum
- \bullet use standard factorization for q_T resummation with $n_f \! = \! 4$ massless flavors

- \bullet only valid in a very small region of the q_T spectrum
- \bullet use standard factorization for q_T resummation with $n_f \! = \! 4$ massless flavors

- \bullet only valid in a very small region of the q_T spectrum
- \bullet use standard factorization for q_T resummation with $n_f \! = \! 4$ massless flavors

Different regimes.

Consider different scalings of k_T

 \bullet emission k_T introduces additional scale to the calculation

Bare factorization theorem $k_T \sim m_b \ll m_H$

$$
\frac{d\sigma_{y_t y_b}}{dq_T} = H_{gg}(m) B_g(q_T) \otimes B_g(q_T) \otimes S_{gg}(q_T)
$$

+
$$
\int d\xi H_{bbg}(\xi) [B_{n,\bar{\chi}\chi}(\xi, q_T, m) \otimes B_g(q_T) \otimes S_{gg}(q_T)]
$$

+
$$
B_g(q_T) \otimes B_{\bar{n},\bar{\chi}\chi}(\xi, q_T, m) \otimes S_{gg}(q_T)]
$$

+
$$
\int d\ell^+ d\ell^- H_{bbgg} \mathcal{J}(\ell^+) \mathcal{J}(\ell^-) B_g(q_T) \otimes B_g(q_T) \otimes S_{\bar{\psi}\psi}(\ell^+, \ell^-, q_T, m)
$$

operators: [M. Stahlhofen's SCET talk ' 15, Liu, Neubert '19]

lead to endpoint divergences! (just as for form factor)

operators: [M. Stahlhofen's SCET talk ' 15, Liu, Neubert '19]

- expect endpoint divergences in soft and collinear contribution
- \bullet form factor $F(m_b,m_H)$ depends on two scales
- \bullet the spectrum introduces an additional scale k_T

$$
\frac{1}{\xi} f_n\left(\frac{m}{k_T}\right) \longleftrightarrow \frac{1}{\ell^+\ell^-} f_s\left(\frac{m}{k_T}\right)
$$

● **how does the additional scale affect the structure of the endpoint divergences?**

 \bullet in general $f_n(m/k_T)$ and $f_s(m/k_T)$ can be non-trivial functions of m/k_T

collinear NLP one-gluon contribution

 \bullet Now: add emission k_T to contribution from collinear loop

● endpoint divergences partially cancel within the beam function but there are left-over poles

collinear LP one-gluon contribution

• contribution from anti-collinear loop can have LP gluon emission

• endpoint divergences have the same sign as NLP collinear emission

collinear NLP and LP emissions

● **uncanceled endpoint divergences for collinear and anti-collinear loops!**

Emission k_T .

soft vs. collinear emission

- emitted gluon can be soft or collinear
- **endpoint divergences have to cancel** within the same sector
- consider both sectors separately

collinear emission

• has to be canceled by collinear LP emission and soft LO NLP!

$$
\int d\ell^+ d\ell^- \left| \frac{\ell^+ \ell^-}{\nu} \right|^{-\frac{\eta}{2}} |\sinh y_\ell|^{-\eta} \left(\left| \bigotimes_{\substack{s,\bar{\psi}\psi\\ \bar{\psi}\in \mathcal{E}}}^{S_{s,\bar{\psi}\psi}^{(0)}} ds \right| + \left| \bigotimes_{\substack{s,\bar{\psi}\psi\\ \bar{\psi}\in \mathcal{E}}}^{S_{s,\bar{\psi}\psi}^{(0)}} ds \right| \right) = +\frac{A(k^-)}{\eta \epsilon} + \frac{B(k^-)}{\eta \epsilon}
$$

• endpoint divergences cancel between diagrams with collinear emission!

$$
\int d\xi \left(\int_{\frac{\pi}{2}} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{\
$$

- **divergences cancel against LP collinear emission!**
- mass and k_T dependence are factorized!

soft emission

- sum of diagrams with collinear emission is finite
- ➔ **sum of diagrams with soft emission has to be finite as well!**
- ➔ free to choose regulator to regulate endpoint divergences in this subset of diagrams!
- LO NLP example for pure rapidity regulator [Ebert, Moult, Stewart,Tackmann, Vita, Zhu '18]

$$
\int d\ell^+ d\ell^- \left(\frac{\ell^+}{\ell^-}\right)^{-\eta} \sqrt{\sum_{s,\bar{\psi}\psi}^{S_{s,\bar{\psi}\psi}}}=0 \quad \text{(scales)}
$$

soft emission

• use the pure rapidity regulator for NLP soft diagram

$$
\int d\ell^+ d\ell^- \left(\frac{\ell^+}{\ell^-}\right)^{-\eta} \bigotimes^{S_{s,\bar\psi\psi}^{(1)}}_{\bar\xi} = \mathcal{O}(\eta^0)
$$

● **both contributions are individually finite!**

soft emission

• what about the collinear LO NLP \times soft LP emission?

endpoint divergences from n - and \bar{n} - collinear sector cancel!

Summary

$$
\int d\xi \left(\int d\xi + \int d\xxi + \int d\xxi + \int d\xxi + \int d\xxi + \int
$$

$$
\int d\xi \left(y^2 \left(y^2 + y^2 \right) + y^2 \right) + y^2 \left(y^2 + y^2 \right) + \int d\ell^+ d\ell^- \left(y^2 + y^2 \right) = O(\eta^0)
$$

- **all endpoint divergences cancel!**
- \bullet *m* and k_T dependence factorizes!

Next steps

- endpoint divergences cancel
- ●calculate finite parts of the integrals
- **compare against full QCD amplitude in respective limit** [Bauer, Glover 1989]
- \bullet phase space integral over emission k
- ●write paper!

Outlook and summary.

-
-
- - -
	-

Outlook.

Yukawa fits

- \bullet include finite mass effects for qqH
- \bullet combine qqH and bottom-mass effects in gluon fusion

$$
\frac{d\sigma(pp \to H)}{dq_T} = y_t^2 \frac{d\sigma_{tt}}{dq_T} + y_t y_b \frac{d\sigma_{tb}}{dq_T} + y_b^2 \frac{d\sigma_{bb}}{dq_T} + (y_b \to y_c)
$$

● fit the bottom and charm Yukawa couplings from Higgs production!

Summary.

N^3 **LL**^{\prime} + **aN**³**LO** prediction for qqH

• new prediction for quark initiated Higgs production • at $N^3LL' + aN^3LO$: uncertainties no longer overlap!

m^b **effects in gluon fusion**

- \bullet the emission k_T adds an extra scale to the problem
- \bullet coefficient functions of endpoint divergences could be non- trivial functions of m/k
- \bullet m and k_T dependence factorizes!
- endpoint divergences from soft and collinear emissions cancel separately

Outlook

• put everything together and fit the Yukawa coupling

Thank you!

Acknowledgments.

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant agreement No. 101002090 COLORFREE).

European Research Council

Established by the European Commission

Matrix element definition.

Beam function

 $\overline{}$

$$
\oint_{\mathcal{B}}\int_{\mathcal{B}}\int_{\mathcal{B}}\int_{\mathcal{B}}B_{n,\chi\bar{\chi}}(x-\frac{\omega}{P_{N}^{-}})=\oint_{N}\left\langle N|\mathcal{B}_{\perp}^{a,\mu}\delta^{2}(k_{\perp}-P_{X,\perp})|X\right\rangle\left\langle X|\bar{\chi}_{n,\omega z}T^{a}\gamma_{\perp\mu}\chi_{n,\omega(1-z)}|N\right\rangle
$$

Soft function

$$
\mathcal{O}_{S,\bar{\psi}\psi}^{ab}(\ell^+\ell^-) = \frac{1}{\ell^+\ell^-} [\bar{\psi} S_n \delta(\ell^+ - n \cdot \mathcal{P}])[\gamma_{\perp,\mu} T^a \frac{\bar{\psi}\psi}{4} S_n^{\dagger} S_n \gamma_{\perp}^{\mu} T^b][S_n^{\dagger} \psi \delta(\ell^- - \bar{n} \cdot \mathcal{P}])
$$

See