

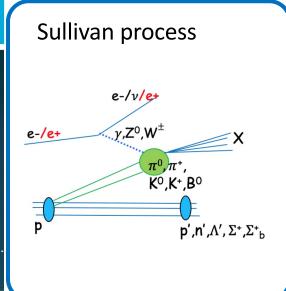


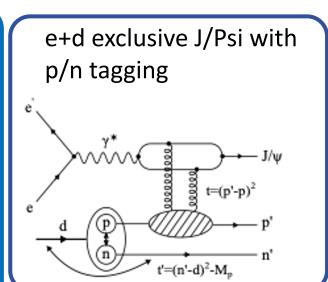


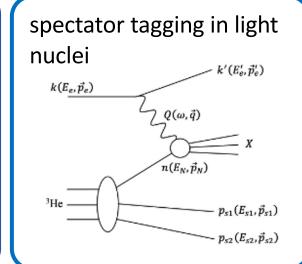
# Overview of ZDC Requirements for the EIC

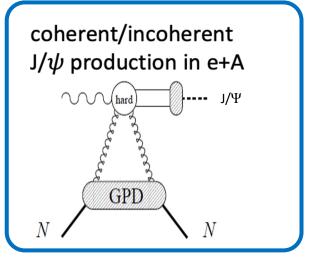
Alex Jentsch (BNL) ajentsch@bnl.gov

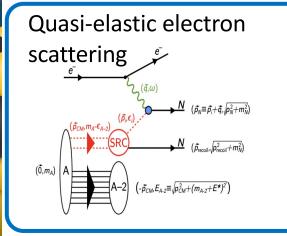
ePIC TIC Meeting Monday, Sept. 23<sup>rd</sup>, 2024

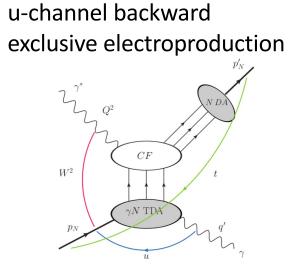




## Basic "Requirements"

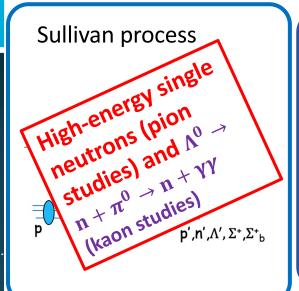

- Initial ZDC requirements were put together prior to the Yellow Report, and before any comprehensive study of the physics was really put together.
  - Hadronic energy resolution:  $\frac{\sigma_E}{E} \le \frac{50\%}{\sqrt{E}} \oplus 5\%$
  - EM energy resolution:  $\frac{\sigma_E}{E} \le \frac{25\%}{\sqrt{E}} \oplus 2\%$
  - Soft photon sensitivity for  $E \sim 100 \text{ MeV}$
  - Sufficient dynamic range for energy deposits from breakup of heavy nuclei (several neutrons with  $E \sim 110~{\rm GeV}$ )
  - Sufficient granularity to provide angular resolution for pT reconstruction:  $\frac{\sigma_{\theta}}{\theta} \leq \frac{3 \ mrad}{\sqrt{E}}$
- ■ZDC acceptance:  $\theta$  < 5mrad (not  $\phi$ -symmetric) driven by aperture, not detector.
  - Fixed by machine, we "get what we get."

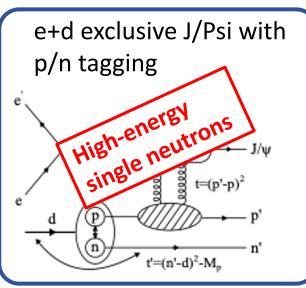

<u>General NB:</u> Previous and current studies and extracted resolutions all assume "perfect" ZDC performance, except for transverse and longitudinal leakage. They do not include effects of backgrounds, electronics, light collection, etc.

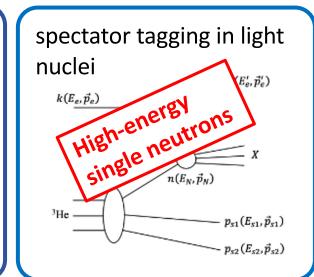

# (some) Physics channels relying on ZDC

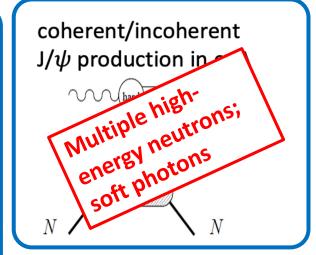


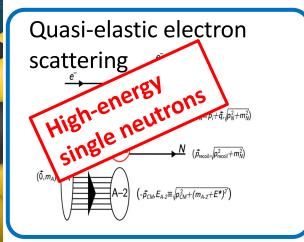


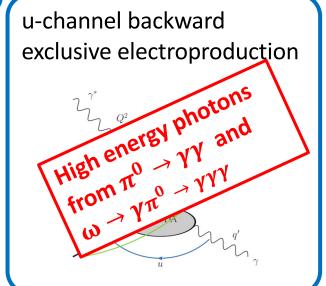





# (some) Physics channels relying on ZDC














# **Top-level Summary of Requirements**

| Physics process                  | Final State particles (for ZDC)       | Required HCAL E resolution                                          | Required HCAL angular resolution                               | Required EMCAL E resolution                                        | Required<br>EMCAL<br>spatial<br>resolution | Notes                                                                                                                                              |
|----------------------------------|---------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Spectator tagged e+d<br>breakup  | Neutrons                              | $\frac{\sigma_E}{E} \le \frac{50\%}{\sqrt{E}} \oplus 5\%$           | $\frac{\sigma_{\theta}}{\theta} \le \frac{2 \ mrad}{\sqrt{E}}$ | N/A                                                                | N/A                                        | https://arxiv.org/pdf/2005.14706.pdf<br>https://arxiv.org/abs/2108.08314                                                                           |
| Exclusive $\pi^+$ production     | Neutrons                              | $\frac{\sigma_E}{E} \le \frac{50\%}{\sqrt{E}} \oplus 5\%$           | $\frac{\sigma_{\theta}}{\theta} \le \frac{2 \ mrad}{\sqrt{E}}$ | N/A                                                                | N/A                                        | https://indico.bnl.gov/event/23814/c<br>ontributions/92533/attachments/550<br>95/94308/Love slides.pdf                                             |
| Incoherent vetoing of e+A events | Neutrons/photons                      | $\frac{\sigma_E}{E} \le \frac{100\%}{\sqrt{E}}$                     | N/A                                                            | 100 MeV photon sensitivity                                         | N/A                                        | https://arxiv.org/abs/2108.01694                                                                                                                   |
| u-channel backward<br>VCS        | Photons                               | N/A                                                                 | N/A                                                            | $\frac{\sigma_E}{E} \le \frac{20\%}{\sqrt{E}} \oplus 3\%$          | < 1-2cm                                    | https://arxiv.org/pdf/2308.10478.pdf  df  https://indico.bnl.gov/event/21074/contributions/82988/attachments/50847/86922/231107%20ZDC%20Update.pdf |
| Kaon structure functions         | $\Lambda^0 \longrightarrow n + \pi^0$ | $\frac{\sigma_E}{E} \sim \frac{35 - 50\%}{\sqrt{E}} \oplus 3 - 5\%$ | $\frac{\sigma_{\theta}}{\theta} \le \frac{2  mrad}{\sqrt{E}}$  | $\frac{\sigma_E}{E} \le \frac{10 - 20\%}{\sqrt{E}} \oplus 2 - 3\%$ | < 1-2cm                                    | https://arxiv.org/pdf/2102.11788.p<br>df                                                                                                           |

### **Photons**

 Soft photon tagging important for vetoing of incoherent e+A events (about 3.25% of events produce \*only\* soft photon).

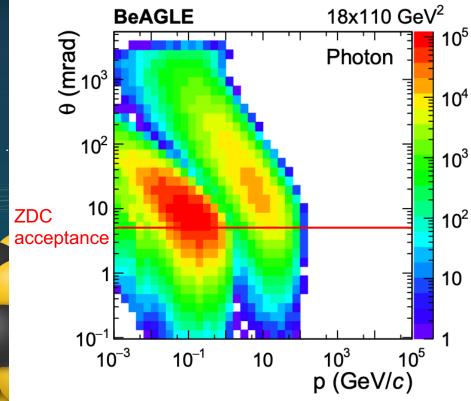
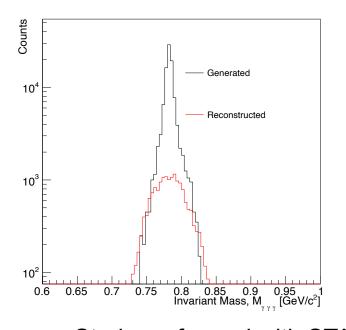
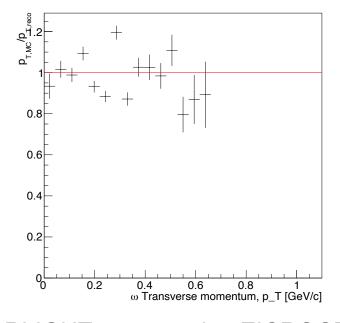
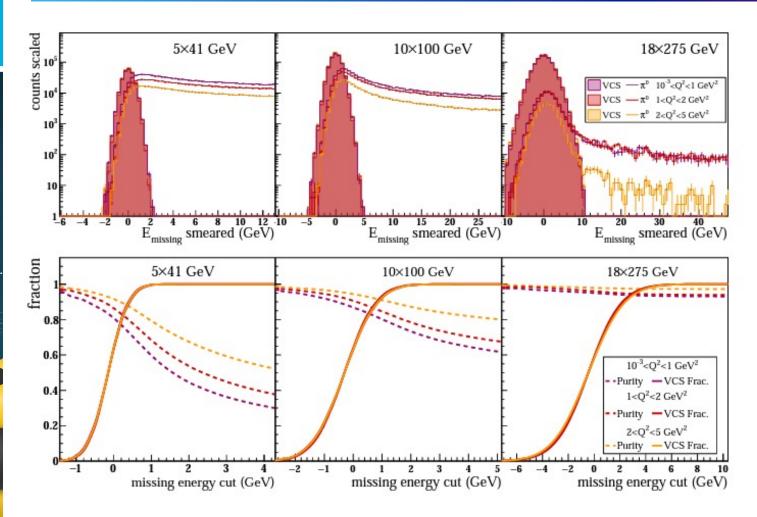





Figure from: W. Chang, E.C. Aschenauer, M. D. Baker, A. Jentsch, J.H. Lee, Z. Tu, Z. Yin, and L.Zheng, Phys. Rev. D **104**, 114030 (2021)

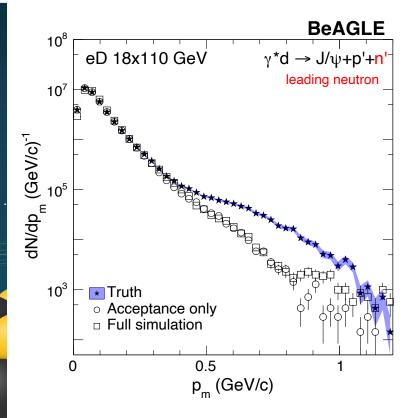

• Backward u-channel  $\omega$  production.



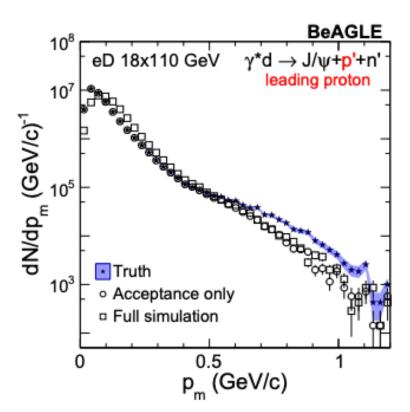


- Study performed with STARLIGHT events using EICROOT.
  - Final state:  $\omega \rightarrow \gamma \pi^0 \rightarrow \gamma \gamma \gamma$  (ZDC acceptance ~ 16%)
- Study assumed  $\frac{\sigma_E}{E} \le \frac{10\%}{\sqrt{E}} \oplus 3\%$  and  $\frac{\sigma_{\theta}}{\theta} \le \frac{1 \, mrad}{\sqrt{E}}$

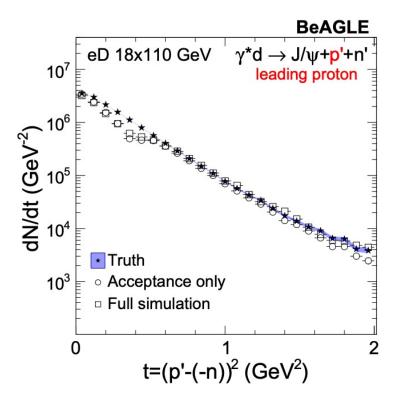
### **Photons**




- Calculation of missing energy requires precise knowledge of the photon energy from the  $\pi^0 \to \gamma \gamma$  decay.
- Reference for the study implies need for 1-2cm spatial resolution to resolve decay photons and separate  $\pi^0 \to \gamma \gamma$  from desired Compton photon, and implies need for  $\frac{\sigma_E}{E} \leq \frac{20\%}{\sqrt{E}} \oplus 3\%$ .
  - https://arxiv.org/pdf/2308.10478.pdf


FIG. 9. (top) Missing energy distribution of single photons within ZDC acceptance. The  $\pi^0$  distributions are scaled to the Compton distributions by the ratio of their cross sections as shown in Tab. II. (bottom) Purity fraction and fraction of signal collected for a given missing energy cut.

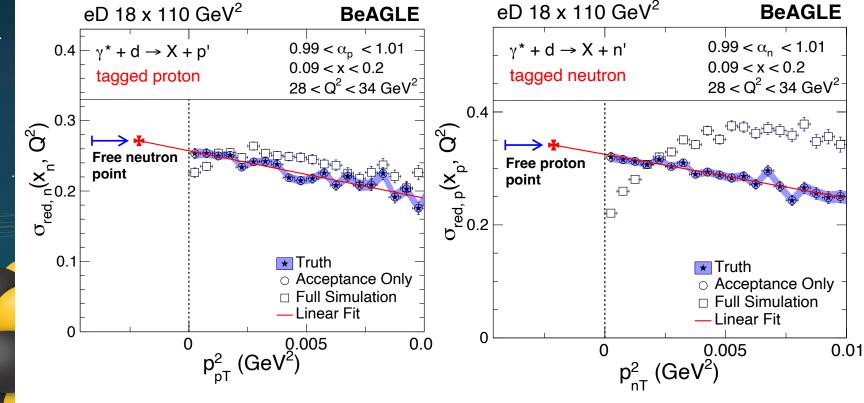
### Single Neutrons


e+d spectator tagging to study short-range correlations.



Proton spectator from OMD.




Neutron spectator from ZDC. Assuming  $\frac{\sigma_E}{E} \le \frac{50\%}{\sqrt{E}} \oplus 5\%$  and  $\frac{\sigma_{\theta}}{\theta} \le \frac{3 \ mrad}{\sqrt{E}}$ 

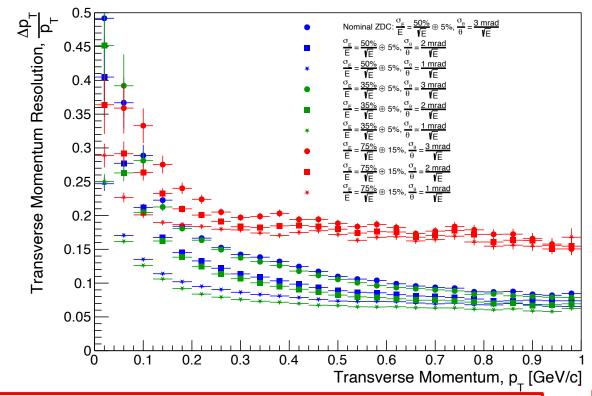


<u>Ultimate goal:</u> active neutron in ZDC; proton spectator in OMD

### Single Neutrons

• e+d spectator tagging to study neutron structure functions  $\rightarrow$  focus on very small angle neutrons near  $\theta \sim 0 \ mrad$ .




Original ZDC assumptions is problematic here – would benefit from improved neutron energy and angular resolution.  $\rightarrow$  goal to have smearing on  $F_2$  extraction between proton/neutron spectator at a similar level.

Proton spectator from OMD.

→ Neutron F<sub>2</sub>

Neutron spectator from ZDC.  $\rightarrow$  Proton  $F_2$ Assuming  $\frac{\sigma_E}{E} \le \frac{50\%}{\sqrt{E}} \oplus 5\%$  and  $\frac{\sigma_{\theta}}{\theta} \le \frac{3 \ mrad}{\sqrt{E}}$ 

### Single Neutrons

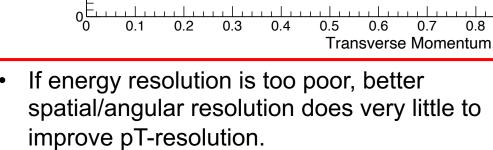


Longitudinal Momentum, p [GeV/c] To get pT resolution competitive with the taggedproton case would require  $\frac{\sigma_{\theta}}{c} \leq \frac{2 m r a d}{\sqrt{E}}$ 

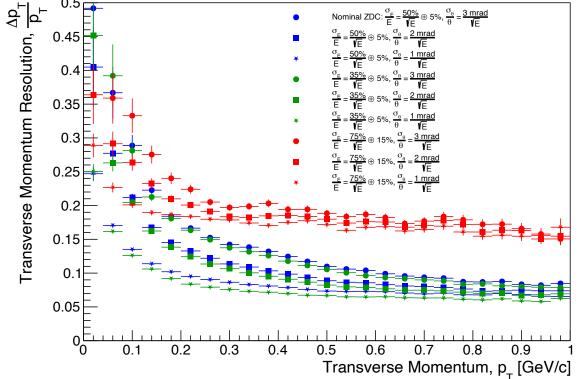
Very little difference between  $\frac{\sigma_E}{F} \leq \frac{50\%}{\sqrt{F}} \oplus 5\%$  and  $\frac{\sigma_E}{F} \leq \frac{50\%}{\sqrt{F}} \oplus \frac{5\%}{\sqrt{F}} \oplus \frac{5\%}{\sqrt{F}} \oplus \frac{5\%}{\sqrt{F}} = \frac{50\%}{\sqrt{F}} \oplus \frac{5\%}{\sqrt{F}} \oplus \frac{5$ 

-ongitudinal Momentum Resolution,

0.45


0.35

0.25


0.15

0.05

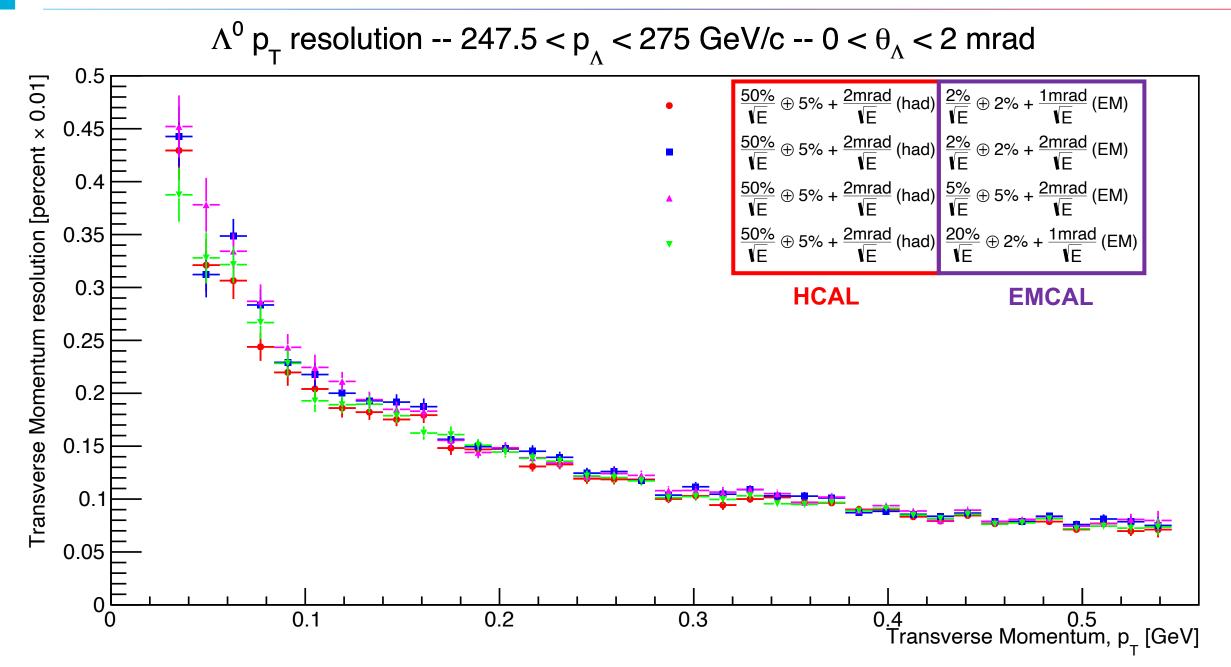
⊕ 5% → Improved constant term has small effect.



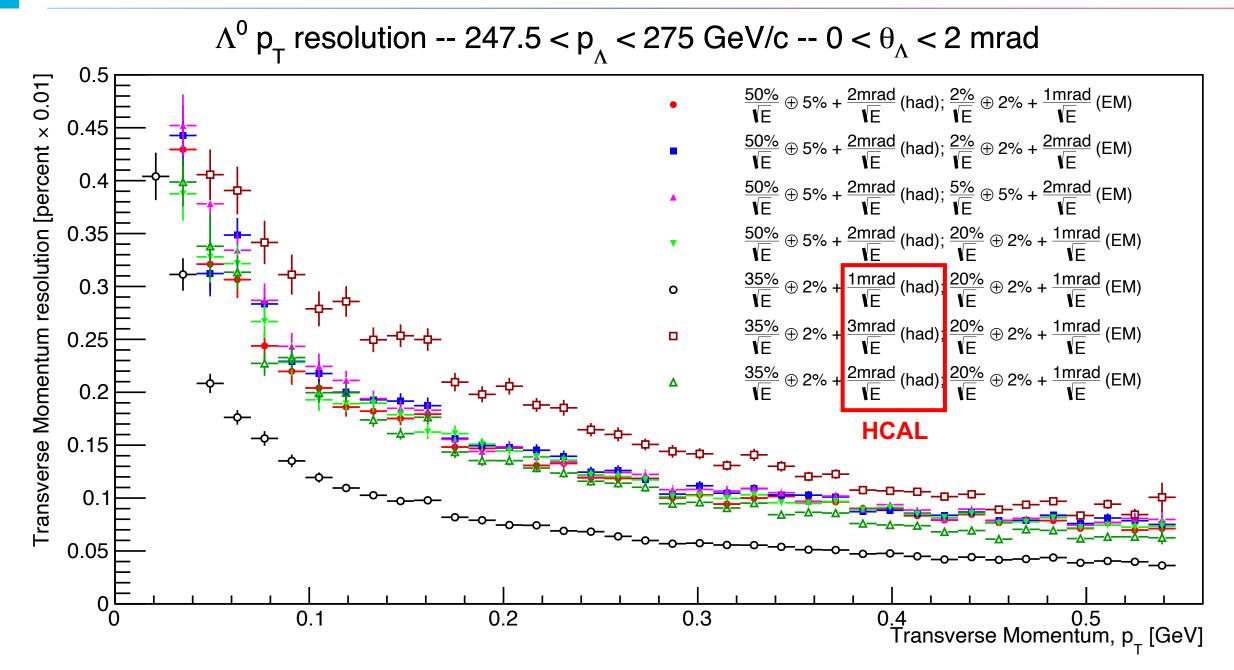
ightharpoonup Need minimum  $\frac{\sigma_E}{F} \leq \frac{50\%}{\sqrt{F}} \oplus 5\%$ 



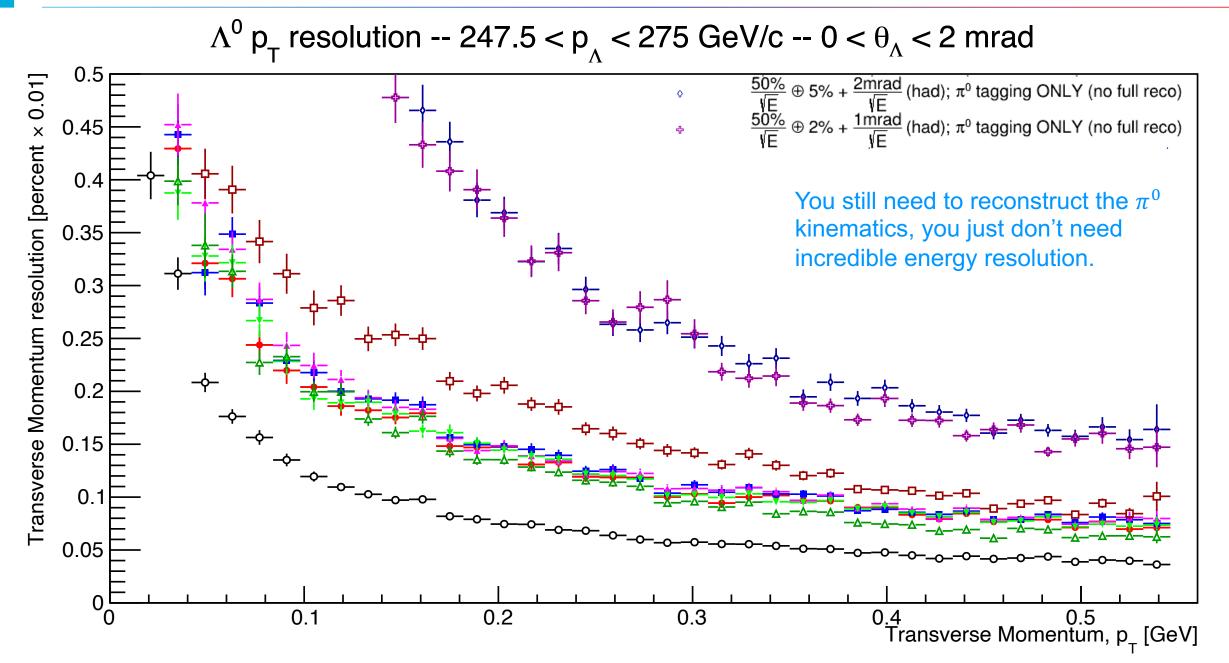
Nominal ZDC:  $\frac{\sigma_E}{F} = \frac{50\%}{\sqrt{E}} \oplus 5\%, \frac{\sigma_\theta}{\theta} = \frac{3 \text{ mrad}}{\sqrt{E}}$ 


 $\frac{\sigma_E}{F} = \frac{35\%}{\sqrt{E}} \oplus 5\%, \frac{\sigma_\theta}{\theta} = \frac{3 \text{ mrad}}{\sqrt{E}}$ 

 $\frac{\sigma_E}{F} = \frac{75\%}{\sqrt{E}} \oplus 15\%, \frac{\sigma_\theta}{\theta} = \frac{3 \text{ mrad}}{\sqrt{E}}$ 


# A very challenging case for the FULL ZDC: $\Lambda^0 \longrightarrow n + \pi^0$

- Using particle gun to rule out any issues with generator:
  - Sample I had on-hand was with crossing angle with wrong sign.
- Shooting  $\Lambda^0$  with:
  - 247.5
  - $0 < \theta < 2 \text{ mrad}$
- GEANT handles the decay → confirmed proper branching fractions:
  - $\Lambda^0 \to p + \pi^- (\sim 67\%)$
  - $\Lambda^0 \rightarrow n + \pi^0 \rightarrow \gamma \gamma \ (\sim 33\%)$
- Particles shot through magnets for proper aperture, but with beampipe "off" and no real ZDC just using for acceptance.
  - Acceptance of  $\Lambda^0 \to n + \pi^0 \to \gamma \gamma$  in this study is around ~65%.
- Smearing applied "by-hand" and ignoring reconstruction itself only looking at effect of resolution assumptions for energy and angle.
  - Specifically,  $n\gamma\gamma$  final-states which successfully arrive at the ZDC have their MC truth vectors smeared by various energy/angular resolution values  $\rightarrow$  assumes nothing about how the reconstruction is carried-out.
- Note: This study does not answer the question of what  $\Lambda^0$  p<sub>T</sub> (which leads to the Kaon t) resolution is \*required\*, just how this depends on the energy and angular resolutions of the ZDC


### Results



### Results



### Results



### **Initial Conclusions**

- Performance for neutron reconstruction plays the **dominant** role in  $\Lambda^0$  reconstruction.
  - Results do not indicate that 20cm long PbWO4/LYSO crystals are *needed* for reconstruction of the  $\Lambda^0$  (via the  $\pi^0 \to \gamma \gamma$ ).
- Angular resolution plays the dominant role in  $p_T$  reconstruction.
  - This is clear from the results on the neutron, where the angular resolution is more-important than the energy resolution (in the limit that E resolution is already quite good for an HCAL).
- You still need to **reconstruct** the kinematics of the  $\pi^0 \to \gamma \gamma$  decay.

### Important Discussion/Considerations

- How do we carry-out the reconstruction?
  - We do not a priori know the vertex for the  $\Lambda^0$  decay  $\rightarrow$  this causes a problem for reconstructing the  $\pi^0$ .
    - <u>For crystals:</u> We will know the positions with ~1-2mm resolution, but we will *not* have the angular information needed to measure the 4-vector (cannot assume photons originate at IP).
    - For imaging via SiPM-on-Tile: We have enough information about the spatial extent of the showers to extract the incident angle of the photons on the EMCAL  $\rightarrow$  this will enable full 4-vector reconstruction of the  $\pi^0$  (but how good will it be??).

#### Some options to consider

#### 1. 20cm long crystals + SiPM-on-Tile:

- E-resolution is very good, but we lose the benefit of the SiPM-on-Tile for the shower angles for photons.
- This study indicates very high energy resolution for photons not required.
- 20cm long crystals mean ~ full absorption of photon energy, and loss of angular information needed to fully reconstruct the  $\pi^0$ , and therefore to fully reconstruct the  $\Lambda^0$ .

PbWO4 radiation length: ~ 0.92cm LYSO radiation length: ~ 1.1cm

### Important Discussion/Considerations

- How do we carry-out the reconstruction?
  - We do not a priori know the vertex for the  $\Lambda^0$  decay  $\rightarrow$  this causes a problem for reconstructing the  $\pi^0$ .
    - <u>For crystals:</u> We will know the positions with ~1-2mm resolution, but we will *not* have the angular information needed to measure the 4-vector (cannot assume photons originate at IP).
    - For imaging via SiPM-on-Tile: We have enough information about the spatial extent of the showers to extract the incident angle of the photons on the EMCAL  $\rightarrow$  this will enable full 4-vector reconstruction of the  $\pi^0$  (but how good will it be??).

#### Some options to consider

#### 1. 20cm long crystals + SiPM-on-Tile:

- E-resolution is very good, but we lose the benefit of the SiPM-on-Tile for the shower angles for photons.
- This study indicates very high energy resolution for photons not required.
- 20cm long crystals mean ~ full absorption of photon energy, and loss of angular information needed to fully reconstruct the  $\pi^0$ , and therefore to fully reconstruct the  $\Lambda^0$ .

#### 2. ~10cm long crystals + SiPM-on-Tile:

- Crystals can act as a sort of "pre-shower", while still enabling usage of the information in the SiPM-on-Tile.
- Crystals still usable to tag events with low-energy photons (e.g. e+A incoherent).
- How well will this really work? A study is needed here!

PbWO4 radiation length: ~ 0.92cm LYSO radiation length: ~ 1.1cm

### Important Discussion/Considerations

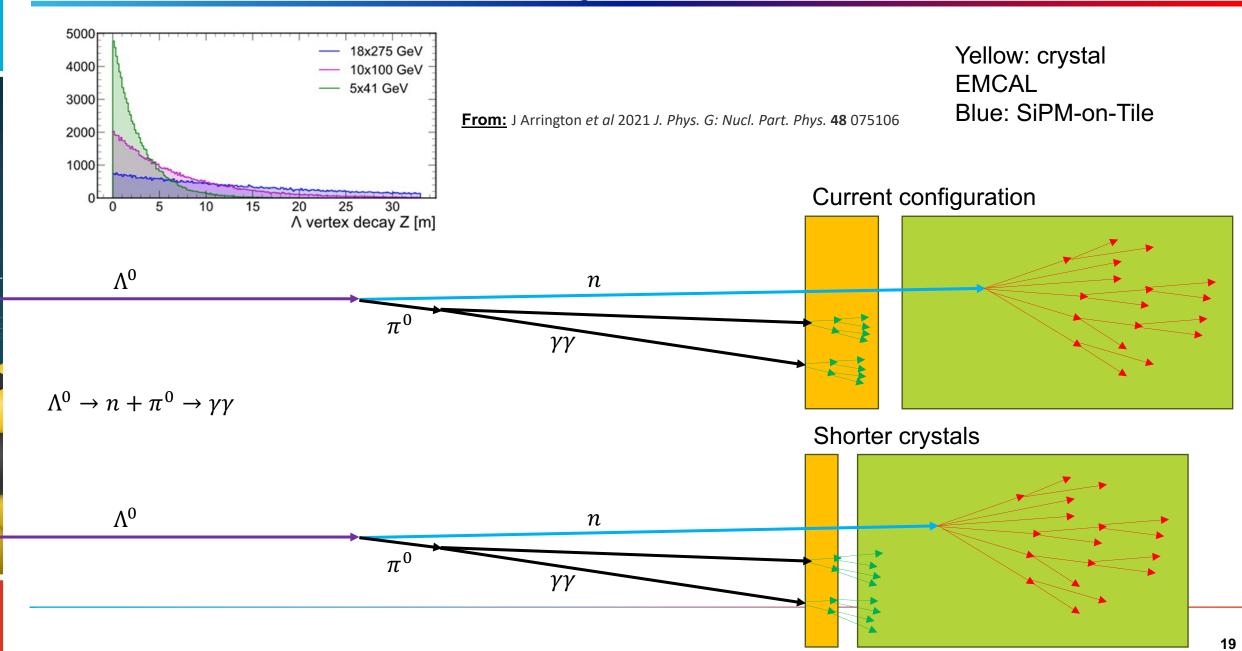
- How do we carry-out the reconstruction?
  - We do not a priori know the vertex for the  $\Lambda^0$  decay  $\rightarrow$  this causes a problem for reconstructing the  $\pi^0$ .
    - <u>For crystals:</u> We will know the positions with ~1-2mm resolution, but we will *not* have the angular information needed to measure the 4-vector (cannot assume photons originate at IP).
    - For imaging via SiPM-on-Tile: We have enough information about the spatial extent of the showers to extract the incident angle of the photons on the EMCAL  $\rightarrow$  this will enable full 4-vector reconstruction of the  $\pi^0$  (but how good will it be??).

#### Some options to consider

#### 1. 20cm long crystals + SiPM-on-Tile:

- E-resolution is very good, but we lose the benefit of the SiPM-on-Tile for the shower angles for photons.
- This study indicates very high energy resolution for photons not required.
- 20cm long crystals mean ~ full absorption of photon energy, and loss of angular information needed to fully reconstruct the  $\pi^0$ , and therefore to fully reconstruct the  $\Lambda^0$ .

#### 2. ~10cm long crystals + SiPM-on-Tile:

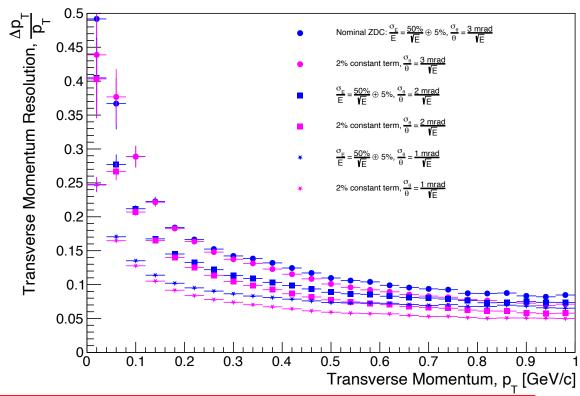

- Crystals can act as a sort of "pre-shower", while still enabling usage of the information in the SiPM-on-Tile.
- Crystals still usable to tag events with low-energy photons (e.g. e+A incoherent).
- How well will this really work? A study is needed here!

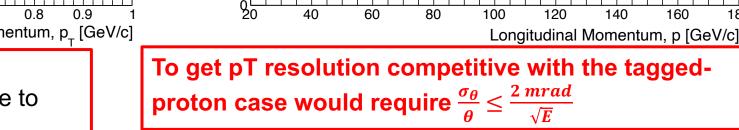
#### 3. SiPM-on-Tile ONLY:

- Allows best option for angular reconstruction of shower.
- Might lose low-E photon capability (need to show it works with SiPM-on-Tile only).
- Potentially more-difficult hadronic/EM shower separation.

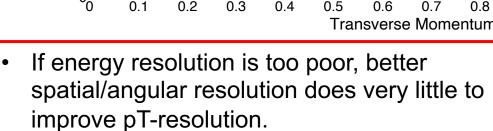
PbWO4 radiation length: ~ 0.92cm LYSO radiation length: ~ 1.1cm

## Pictorial view of neutral decay into ZDC

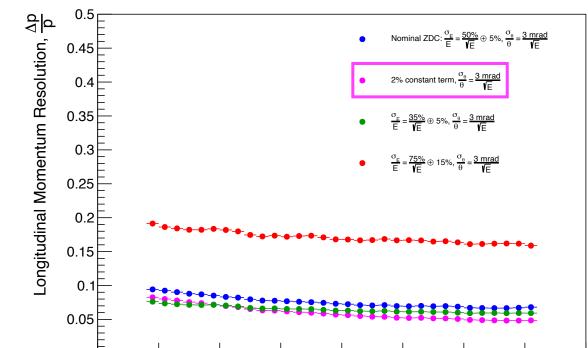




### **Conclusions**

- ZDC requirements have evolved as understanding and priority of measurements has solidified.
  - High energy resolution **better** than  $\frac{\sigma_E}{E} \le \frac{50\%}{\sqrt{E}} \oplus 5\%$  always assumed.
- Dynamic range of EMCAL a clear challenge  $\rightarrow$  ~100 MeV photons from e+A "quasi-coherent" reactions; ~ 10-100 GeV photons possible from other exclusive processes (lambda decay, u-channel DVCS)
- **ZDC implementation would benefit from a creative approach** potentially non-static configuration which can be "changed" for different running conditions.
  - Crystal EMCAL need depends on physics channel some level of conflict in the final states & associated requirements.
  - Having the ability to bring the EMCAL in/out of configuration, as needed, would provide clear benefit to specific physics needs.
- Angular resolution is a common thread this was less-emphasized early-on, an absolute requirement for successful exclusive physics program.


# Backup

# Single Neutrons (better constant term)






Very little difference between  $\frac{\sigma_E}{F} \leq \frac{50\%}{\sqrt{F}} \oplus 5\%$  and  $\frac{\sigma_E}{F} \leq$ ⊕ 5% → Improved constant term has small effect.



$$ightharpoonup$$
 Need minimum  $\frac{\sigma_E}{E} \le \frac{50\%}{\sqrt{E}} \oplus 5\%$ 

