

TC-office News

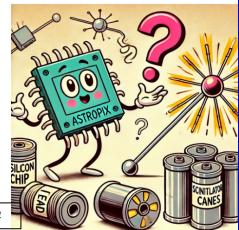
Silvia Dalla Torre, Prakhar Garg, Oskar Hartbrich, Matt Posik

ePIC General Meeting, November 1st, 2024

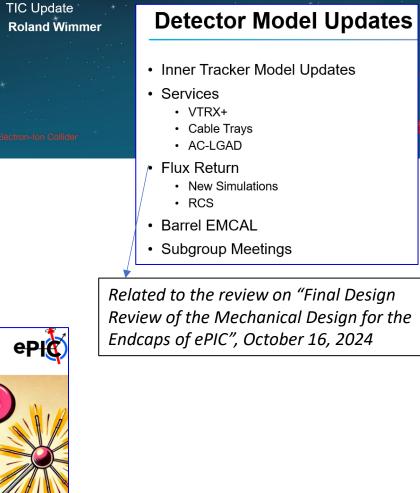
The most recent TIC meetings

October 2024

- 28 Oct TIC meeting preTDR news; nHCal update; DSCs and project contact, highlights pfRICH
- 21 Oct TIC meeting progress (tracking); nHCal update; Project-DSC bilateral meetings, highlights
- 14 Oct TIC meeting progress (FF); radiation maps, an update
- O7 Oct TIC meetings integration and mechanics update TDR effort, progress (Calorimeters); BIC


The report included:

- Highlights of the BIC review (September 19, 2024)
- AstroPix Layer Placement (next slide)


- The BIC design is maturing rapidly
- The reviewer comments did not include any surprises, boiling down to encouraging us to execute our PED program as planned
 - Looking forward to the final Findings and Recommendations - Just got notification this morning that the final report is ready!
- I am proud of the performance of our team preparing for the review!

S. Joosten, 10/7/2024

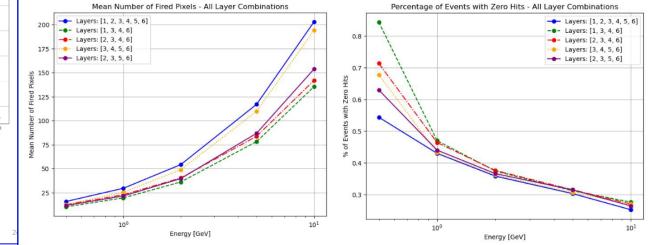
Integration, Installation and Infrastructure (Triple I Group)

BIC: AstroPix Layer Placement

Thoughts on Layer Placement Optimization ePlot

The baseline configuration (1-3-4-6) is a compromise:

- Layer 1 is purely there to support the DIRC, negligible impact on calorimeter performance
- Other layers placed to maximize electron-pion
 separation: sample shower maximum and shower tail
- Not instrumenting layer 2 misses the shower onset for most electromagnetic showers:
 - $\circ \quad \text{Large impact on neutral particle reconstruction and} \\ \pi^{0}\text{-photon separation (strongly degrades neutral particle performance)}$
 - Moderate impact on precision of energy separation of overlapping showers in ScFi


If Layer 1 is not needed for the DIRC:

- Can move to 2-3-4-6 or 2-3-5-6 configuration
- Alternate 4-layer configurations will boost all performance metrics
- Greatly reduce risk of underperformance in neutral particle reconstruction

Studies to prepare detailed impact metrics ongoing

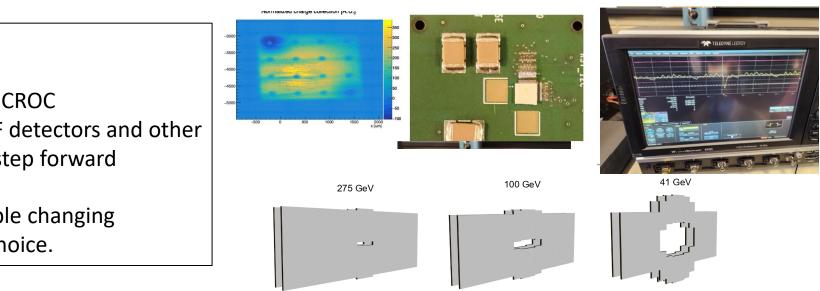
3 GeV electron shower profile at $\eta = 0$

Mean hit multiplicity and % of zero hits in all AstroPix layers **ePi**

Note that this is for photons at $\eta=0$, different η will differ

The Collaboration as a whole has a responsibility here:

- AstroPix layer 1 is almost only a one more tracking layer
 - Which contribution to tracking (also helping hpDIRC)
 - Adopting layer 1, which price would be paid in term of BIC performance as ECAL ?

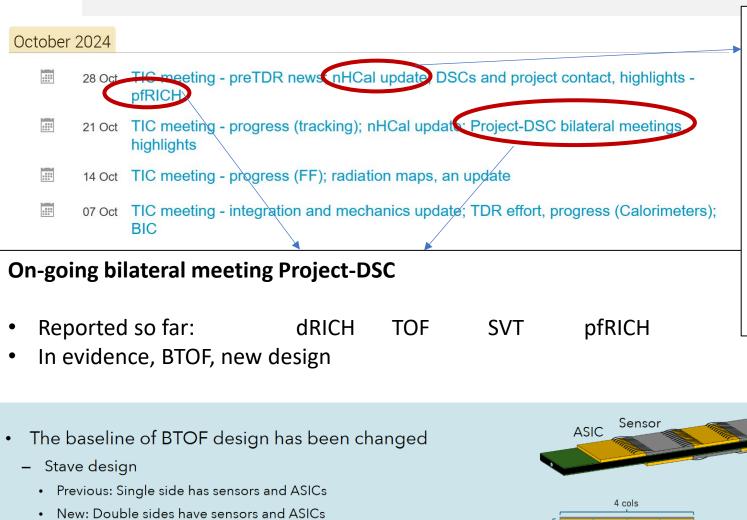

The most recent TIC meetings

October 2024

- 28 Oct TIC meeting preTDR news; nHCal update; DSCs and project contact, highlights pfRICH
- 21 Oct TIC meeting progress (tracking); nHCal update; Project-DSC bilateral meetings, highlights
- 14 Oct TIC meeting (progress (FF) radiation maps, an update
- 07 Oct TIC meeting integration and mechanics update; TDR effort, progress (Calorimeters); BIC

Radiation studies

- simulation sensitivity to cuts and the need for specialized plugins to access Geant4 step information
- The current setup agrees within 30% with STAR Hall measurements.
- IMPORTANT: instructions to correctly use the maps
- Updated in wiki



FF progress report, highlights

- Successful test at BNL of AC-LAG and EICROC
 - Both sensor and FEE are key for FF detectors and other subsystems in ePIC → a through step forward
- Roman pots geometry updated to enable changing geometry with magnet configuration choice.

The most recent TIC meetings

64 rows

- No acceptance gap between sensors and no direct contact between ASIC and sensor

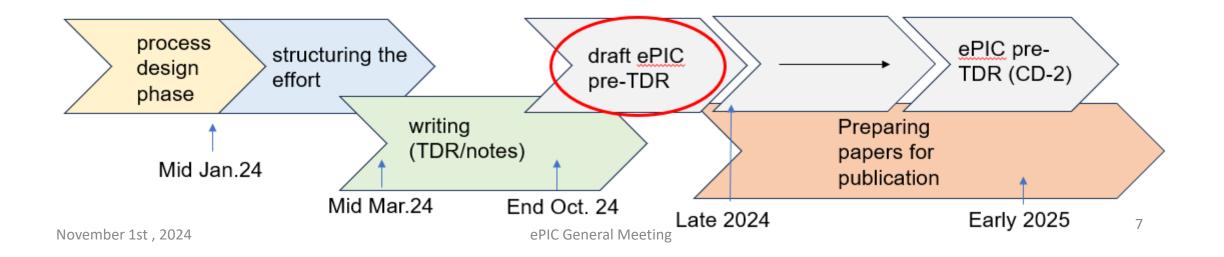
Previous: 3.2x4 cm² with 64x4=256 strip-type electrodes
New: 3.2x2 cm² with 64x2=128 strip-type electrodes

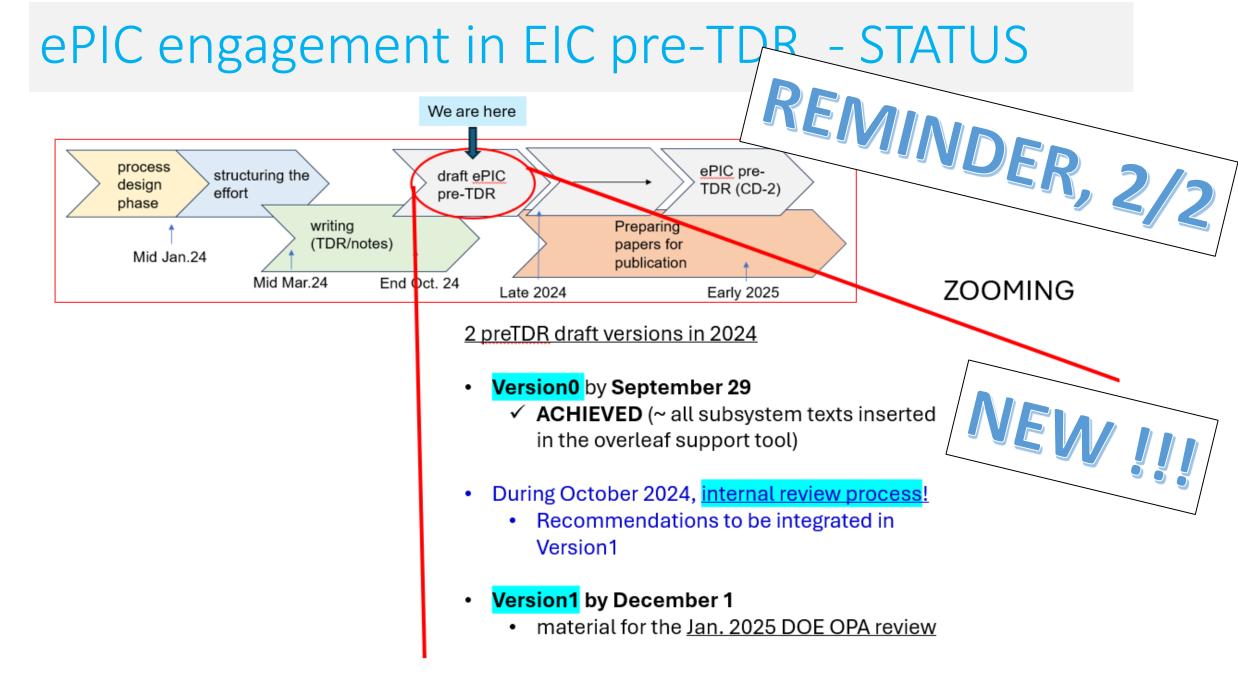
Sensor

nHCAL update

2 cols

- important progress in the physics motivation studies:
 - Vector meson reconstruction in dimuon channel, Vector meson reconstruction in KK channel, Diffractive dijets with nHCal, Par cele distribu ons in nHCal, Jets with neutrals, Veto for dRICH


• New architecture: FLHCAL technology


5

preTDR draft

ePIC engagement in EIC pre-i Cir REMINDER, 1/2

- ePIC planning: with priority to preTDR, prepare in parallel 3 publications on high-rank scientific journals, reshaping the preTDR material and focusing on
 - The ePIC Detector (from chapter 8)
 - The ePIC detector performance for EIC physics scope (from chapter 2)
 - The ePIC software and computing model (from dedicated subsection in chapter 8)
- PROCESS TIMELINES:

ePIC engagement in EIC pre-TDR - STATUS

In detail, chapter 2 "Physics Goals and Requirements"

	chapter	section	subsection	sub- subsection	sub-sub- subsection	title	text inserted		It requires the rest of chapter 2 to be in
	2					Physics Goals and Requirements			place and inputs
		2.1				EIC Context and History	Y		from Project
PIC		2.2				The Science Goals of the EIC and the Machine Parameters	N		поштюјесе
responsibility			2.3			Reconstruction Tools and Special Probes		\neg	Clever addition by
				2.3.1		Kinematic reconstruction	Y		
Project				2.3.2		Electron identification and event selection	Y	(AC's
responsibility				2.3.3		Jets: a versatile probe	Y	ノ	
			2.4			The EIC Science (ePIC performance for key observables)	Y		
loint				2.4.1		Origin of Nucleon Mass	Y		
responsibility					2.4.1.1	Inclusive neutral current cross sections	Y		
					2.4.1.2	Upsilon production	Y		
				2.4.2		Origin of Nucleon Spin	Y		
				2.4.3		Multi-Dimensional Imaging of the Nucleon	Y		
					2.4.3.1	Imaging in Momentum Space	Y		Late in simulation; can it be there for pre-TDR ?
					2.4.3.2	Imaging in Transverse Position Space	Y		
				2.4.4		Properties of Nuclear Matter	Υ		
					2.4.4.1	Gluon Saturation	Υ		
					2.4.4.2	Nuclear Modifications of Parton Distribution Functions	N		
					2.4.4.3	Passage of Color Charge Through Cold QCD Matter	N	ł	

In detail, chapter 8 "Experimental Systems"

napter o Experimental Oystems									
		chapter	section	subsection	subsection	title	test inserted		office coordination
				20000000					and chapter 2 in place
PIC		8				Experimental Systems			
esponsibility			8.1			Experimental Equipment Requirements Summary	N		
			8.2			General Detector Considerations and Operations Challenges			It requires 8.1, 8.2.2,
roject				8.2.1		General Design Considerations	N	<	· ·
responsibility				8.2.2		Backgrounds and Rates	N		8.2.3
				8.2.3		Radiation Level	N		
pint			8.3			The ePIC Detector			
responsibility				8.3.1		Itroduction	Y		Project driven
				8.3.2		Magnet	N		riojeet ariveri
				8.3.3		Tracking	N		
					8.3.3.1	The silicon trackers	Y	T	
					8.3.3.2	The MPGD trackers	Y		
				8.3.4		Particle identification	Y		
					8.3.4.1	The time-of-flight layers	Y		On the way, also
					8.3.4.2	The proximity focusing RICH	Y		-
					8.3.4.3	The high performance DIRC	Y		requiring that the
					8.3.4.4	The dual radiator RICH	Y		sub-subsections are
				8.3.5		Electromagnetic Calorimetry	N		
					8.3.5.1	The backward endcap electromagnetic calorimeter			in place (ready, even
					8.3.5.2	The barrel electromagnetic calorimeter			
	\top				8.3.5.3	The forward endcap electromagnetic calorimeter			if not yet inserted, for
	+			8.3.6		Hadronic Calorimetry	N		PID)
	+				8.3.6.1	The backward endcap hadronic calorimeter	Y		110)
					8.3.6.2	The barrel hadronic calorimeter	Y		
	+				8.3.6.3	The forward endcap hadronic calorimeter	Y		
				8.3.7		Far forward detectors	Y		
	+				8.3.7.1	The detectors in the B0 bending magnet	Y		
					8.3.7.2	The roman pots and the off-momentum detectors	Y		
					8.3.7.3	The zero degree calorimeter	Y		
	+			8.3.8		Far backward detectors	Y		
	+				8.3.8.1	The luminosity system	Y		
	+				8.3.8.2	The low Q2 taggers	Y		
	+			8.3.9		Polarimeters	N		
	+				8.3.9.1	The electron polarimeters	N		Extended version
	+				8.3.9.2	The proton polarimeters	N		available as a
	+			8.3.10		Readout Electronics and Data Acquisition	Y	/	avalianie as a
	+			8.3.11		Software and Computing	N		separate document
	+		8.4			Detector Integration	N		· ·
	+			8.4.1		Installation and Maintenance	N		10
			8.5			Detector Commissioning and Pre-Operations	N		

It requires ACs-TC-

preTDR draft, Version0.1 status of the text

Reviewing process

• October $20^{th} \rightarrow$ October 27^{th}

Chapter 2 - Physics Goals and Requirements

- No reviewers appointed
- 6 feedback received

Chapter 8 - Experimental Systems

- Individual reminders, when needed to the appointed reviewers on October 25th
 - Feedback from reviewers : **25** (over 27)
 - Feedback from other collaborators : **11**
- The address of the google sheets where the reports are collected have been distributed to text editors

preTDR draft, NEXT STEPS

Next draft version due on December $1^{st} \rightarrow Version1$

Integrating the review inputs

- Each subsystem is requesting to analyze the inputs, to engage exchanges with reviewers, when needed, to integrate the recommendations in the text in preparation for Version1
- At TIC meeting on November 18th, DSCs will be request to shortly report on relevant inputs received (high-level, no details)

Strategy

• As much as possible, please go on **updating the texts directly in the official overleaf project** to let us directly follow the progress