

ePIC Activities in Taiwan

ePIC General Meeting

December 19, 2024

Po-Ju Lin Department of Physics, National Central University On behalf of Taiwan Collaborators

Groups in Taiwan

- Academia Sinica
- National Taiwan University
- National Central University
- National Tsing Hua University

The 3rd EIC-ASIA Workshop

National Cheng Kung University Department of Physics, Rm 36169(1F) No.1, University Road, Tainan City, Taiwan

International Advisory Committees

Elke Aschenauer (ENL) Wen-Chen Chang (AS) Jinhui Chen (Fudan) Shuddha Shankar Dasgupta (NISER Abhay Deshpande (SBU) Yuji Goto (RIKEN) Taku Gunji (CNS, UTokyo) Yongsun Kim (SJU) Seung-II Nam (PKNU) Ent Rolf (JLab) Bowen Xiao (CUHK) Qinghua Xu (SDU) Yi Yang (NCKU) Yifei Zheng (USTC) Wen-Chen Chang (AS) Jiunn-Wei Chen (NTU) Kai-Feng Chen (NTU) Pai-hsien Jennifer Hsu (NTHU) Chung-Wen Kao (CYCU) Chia-Ming Kuo (NCU) Chi-Jen David Lin (NYCU) Po-Ju Lin (NCU) Rong-Shyang Lu (NTU) Jen-Chieh Peng (UIUC, NCU) Zhangbu Xu (BNL, NCKU) Yi Yang (NCKU)

- NCKU Jan. 29-31, 2024
- Actively collaborating with Asian colleagues

Lutetium Yttrium Orthosilicate (LYSO)

- A Candidate of the ZDC ECAL
- Higher light yield
- Lower temperature dependence
- Manufactured by Taiwan Applied Crystal

Crystal	X _o (cm)	LY(#/MeV)	T dep.	Decay time(ns)	λ_{em}
PbWO ₄	0.89	200	-1.98% / °C	5(73%) 14(23%) 110(4%)	420nm
LYSO	1.14	30,000	-0.28% / °C	39	420nm
GAGG	1.59	40,000~ 60,000		50~150	520nm

One crystal : 7.12mm*7.12mm*88.3mm Array size : 56.96mm*59.96mm*88.3mm

First Prototype

• LYSO

- 8x8 array
- Each crystal : 7.1mm*7.1mm*88.3mm (8X₀)
- ESR reflection layer

• SiPM

- Radiation tolerance
 - SiPM : 2x10¹⁴ n/cm² (CMS ECAL)
- MICROFC-60035

GTM Readout board

- 2 Citiroc1A (2 x 32 channels)
- Separate voltage adjustment
- Self-triggered

8x8 SiPM array

First Beam Test

- Time
 - 2024 Feb. 15th to Feb. 21th
- Location
 - ELPH@Tohoku, Japan
- Participants
 - RIKEN, Tsukuba University, Tsukuba University of Technology, Sejong University, EIC-Taiwan
- Beam
 - 47.18 MeV to 823.36 MeV positron beam
- Scan list
- SiPM HV Scan, Beam energy scan, detector rotation, etc.

Setup in Beam Test

Setup @ ELPH

Beam Test Result

- Measured ADC value versus energy deposit.
- Energy deposit deduced from the Monte Carlo simulations.
- Most of the data shows nonlinear behavior. About 60% of the data from the 47 MeV beam remain in the linear range.
- Focus on the very low-energy-deposit part of the data for a preliminary energy resolution study.

Data-MC Comparison

- Comparisons with different E-deposit clustering at 47MeV
- Energy selection : [2.5MeV, 20MeV]
- E_{3x3} , E_{5x5} : E-deposit sum with the clustering of 3x3 or 5x5 crystals

Preliminary Energy Resolution

• E_{5x5} energy deposit with 47 MeV beam

- Crystal ball fitting:
 - Mean = 31.446 ± 0.098 MeV
 - Sigma = 6.127 ± 0.077 MeV
- 19.5% energy resolution for 47MeV positron beam
- Convoluted with the 11.6% uncertainty of the beam momentum. The energy resolution is about 15.6% with the beam-momentum uncertainty removed.

E_{5x5} @ 47 MeV

Data with Higher Beam Energies

- Try to describe the nonlinear relationship between ADC values and deposited energies using a function describing the saturated SiPM behavior.
- SiPM saturation function¹:

$$ADC = \frac{(\beta + 1)ADC_{LO}}{\beta + \epsilon LE_{dep}/ADC_{LO}}$$
$$ADC_{LO} = N_{Pix} \left[(1 - \alpha)ADC_{pix} \left(1 - e^{-\frac{\epsilon LE_{dep}}{N_{pix}}} \right) + \alpha \epsilon LE_{dep} \right]$$

- α represent contribute factor of remaining photons
- β represent decay factor of hit channels
- ϵ represent factor photon collection

¹Katsushige Kotera, <u>https://arxiv.org/abs/1510.01102v4</u>

2nd Beam Test

- 2025 Feb. 17th to Feb. 20th at ELPH
- 2nd Prototype:
 - Radiation length $8X_0 \rightarrow 6X_0$
 - 64ch LYSO + APD
 - 36ch PbWO₄ + SiPM / APD
 - 2*Beam monitor (2mm scintillator bar arrays)
- Goal
 - Test the performance of LYSO with APD
 - Compare with PbWO₄
 - Study the position resolution
 - Improve the event selection

Status of the ^{2nd} Prototype

	Parts	Progress@2024/11/18	Progress@2024/12/17	
1. LYSO	LYSO Cryatal	ready	ready	
	APD (C30739ECERH)	ready	ready	
1cm*1cm*6.6cm 8x8 array	APD Readout PCB	production	ready	Т
	LYSO Housing	ready	ready	
	LYSO Base support	ready	ready	
2. PbWO4	PbWO4	designing	production	
	SiPM (MICROFC-60035)	ready	ready	
2cm*2cm*5.3cm 6x6 array	APD (C30739ECERH)	production	ready	
	SiPM Readout PCB	designing	designing	
	APD Readout PCB	designing	designing	
	PbWO4 Housing	designing	designing	
3. Trigger 2mm*2mm*8cm 32ch in X 32ch in Y XY layers/set Two sets	scintillator	ready	ready	
	SiPM	ready	ready	
	SiPM Readout PCB	production	ready	
	scintillator Housing	production	ready	
	trigger Base support	production	ready	
4. GTM	GTM firmware	designing	ready (continuing updating)	
	GTM base support	production	ready	
	cable	production	ready	
5. Moving stage	base plate	designing	designing	
	slide rail	ready	ready	
	remote control	ready	ready	

Testing

Testing

Barrel TOF Mechanical Structure

○ Yi Yang (AS), Wen-Chen Chang (AS):

design, simulation, testing, assembly(?), final production(?)

- Experiences with the AMS-02 UTTPS radiator and lead the project of the mechanical structure of STAR FST
- Excellent machine shop

Yu-Tang Wang NCKU Ph.D. student)

○ Andreas Jung (Purdue):

design, simulation, prototype, final production(?)

- Experienced in R&D for low mass support structures.
- Working on the light-weight composite tracker support structures for CMS

Latest Support Structure of BTOF

From Purdue group

- Radius is 63 66 cm from the beam pipe covering $-1.42 < \eta < 1.77$ (Area: 10 m²)
- Total material budget in acceptance is ~0.01 X/X0

Prototypes from Purdue

Thermal Test Setup @ NCKU

Heat source (x 9) Ceramic plate (5Ω): ~500°C

Thermocouple (x 16) O Type E: -250°C ~ 900°C

Environmental chamber

- O Inner dimensions: 40 x 50 x 60 cm³
- Temperature: -40 °C ~ 100 °C (± 0.2 °C)
- O Humidity: 10% ~ 98% (± 2.5%)

Flow meter

○ 20 – 300 cc/min

Cooling system

O Temperature: 3 °C ~ 32 °C

Thermal Test Setup @ NCKU

3D-printed holder

Output power of the heat source can be adjusted by the input current

No Cooling Water

Coolingn Water at 15 °C, 100 c.c./min

Simulation: No Cooling Water, 6 W

Very preliminary results done by undergrad student of NCKU, need to double check

Test Setup for Half Stave (1070 mm)

Temperature Distribution

- Events to broadcast EIC physics in Taiwan and to strengthen the collaboration with Asian colleagues.
 Crystal for the ZDC ECAL
 - On-going effort on the analysis of data collected in the 1st beam test.
 - 2nd beam test in next February
- Barrel TOF Mechanical Structure
 - Thermal performance tests on the prototypes shows expected behavior. Confidence to produce longer staves with similar technology.
 - Will carry out further tests including deformation, and the simulation.