

ePIC Collaboration Technical Coordinator Report

Silvia Dalla Torre

Electron-Ion Collider (EIC) Resource Review Board (RRB) Meeting 4th EIC RRB meeting, BNL, November 12-13, 2024

TC supported by the TC-office

TC-office members

Prakhar Garg (Yale)

Oskar <u>Hartbrich</u> (ORNL) Matt Posik (Temple U.)

• The organizational model of the ePIC detector

• ePIC detector aspects deserving emphasis: examples of recent progress

• Summarizing

OUTLOOK

The ePIC DETECTOR:

the combined EIC PROJECT and ePIC COLLABORATION efforts

ePIC (designed for IP6 at EIC) is the **Project Detector**

ePIC is the detector to which the ePIC Collaboration is dedicated

Project mission for the ePIC detector

 ensure that all aspects related to the <u>EIC project realization and</u> <u>completion</u> are satisfied

Project support to the ePIC detector

- <u>Administrative structure</u>
- Engineer team
- Financial support
 - Past : mainly via R&D program
 - Present: mainly via PED (Project Engineering & Design)
 - After CD3: construction

Collaboration mission for the ePIC detector

- optimize the <u>physics reach</u> of the detector
- <u>manage the Collaboration</u>, goals: making it functional, effectively operative and a professionally sound environment

Collaboration support to the ePIC detector

- Scientific workforce
 - For hardware, software and dedicated physics studies
- Financial support
 - <u>Staff members from academic Institutions and international</u>
 Institutions
 - Past and present: <u>international</u> cofinancing R&D, engineering studies
 - <u>international</u> in-kind contributions to constructions

The ePIC DETECTOR:

the combined EIC PROJECT and ePIC COLLABORATION efforts

Project support to the ePIC detector

- Administrative structure
- Engineer team
- **Financial support**
 - Past : mainly vai R&D program ٠
 - Present: mainly via PED (Project Engineering & Design)
 - After CD3: construction

manage the Collaboration to make it functional, effectively operative

Collaboration support to the ePIC detector

- Scientific workforce
 - For hardware, software and dedicated physics studies
- **Financial support**
 - Staff members
 - Past and present: international cofinancing R&D, PED
 - international in-kind contribution to constructions •

Engagement in hardware efforts (detector subsystems) within ePIC

Within ePIC, each subsystem is realized by a <u>Detector</u> <u>Subsystem Collaboration</u>, DSC (15 DSCs, in total) guided by a <u>Leader</u> (DSL) or two co-Leaders assisted by <u>Technical Contacts (</u>DSTC)

- The internal organization of the various DSCs is different because it is designed by each DSC autonomously
- The DSCs select their DSLs and DSTCs
- The autonomy of the DSCs guarantees flexibility as needed and ensures motivation and enthusiasm

Detector consistency is ensured by

- ePIC Technical Coordination
- Role of DSLs/DSTCs in the Project

The combined EIC PROJECT and ePIC COLLABORATION efforts:

HOW?

A TC-office initiative: at the ePIC Collaboration Meeting, the parallel session dedicated to "Integration & Installation"

An opportunity for a deeper and deeper collaboration between Project Engineers and Detector Scientists

At the July 2024 ePIC meeting in Lehigh

.3:00	Introduction/ Current status of ePIC Detector & discussion	Rahul Sharma 🦉	
	Rm 151, Rauch Business Center	13:00 - 13:35	
	Central Detectors Installation and supports & discussion	Dan Cacace et al. 🥖	
4:00	Rm 151, Rauch Business Center	13:35 - 14:10	al
	Mechanics and simulation information exchanges	Dr Wouter Deconinck 🥝	q
	Rm 151, Rauch Business Center	14:10 - 14:30	2
	Far detectors installation and support & discussion	Jonathan Smith 🥖	0
	Rm 151, Rauch Business Center	14:30 - 15:05	
.5:00	Routing Plans for Cooling and Services & discussion	Roland Wimmer 🦉	
	Rm 151, Rauch Business Center	15:05 - 15:40	
	dRICH Removal Considerations	Alex Eslinger 🥝 🔺	S
	Rm 151, Rauch Business Center	15:40 - 15:55	È A
6:00	BOT and ECT (uRwell detectors) design and integration for the MPGD	Seung Joon Lee 🦉	G
	Rm 151, Rauch Business Center	15:55 - 16:10	S
	Barrel EMCAL Engineering Update	Kevin Bailey et al. 🥝	S
	Rm 151, Rauch Business Center	16:10 - 16:25	_p
	nEMCal Engineering Design Update	Carlos Munoz Camacho 🥜 🚽	ร ร
	Rm 151, Rauch Business Center	16:25 - 16:40	

8mrad Rotation

B0 Challenges

~50 in-person

~10 online

~10 Engineers

An I&I session planned at the coming ePIC meeting in January 2025, Frascati

• The organizational model of the ePIC detector

• ePIC detector aspects deserving emphasis: <u>examples</u> of recent progress

• Summarizing

Si TRACKING : the SVT

Extensive Si-detector experience in the ALICE, ATLAS, CMS, sPHENIX, STAR collider experiments

TRACKING by MPGDs

CyMBaL – cylindrical MicroMegas

Moving to prototyping phase ٠

Defining configuration

and integration

٠

µRWELL-BOT

٠

Technology validated by prototyping and testbeam ٠

Preparing the assembly site

SENSORS for ePIC CALORIMETRY

SiPM sensors for all Calorimeters

- SENSORS RECENTLY INTRODUCED IN CALORIMETRY
- direct experience is coming from the applications in GlueX, STAR and sPHENIX (these colleagues now at work for ePIC calorimetry)
- For the first time so extended calorimetric usage in an experiment !

Rad Dose and Neutron Flux

10⁹ 5 Accumulated fluence 10⁸ 1.5 cm radius 2.5 cm radius 10⁶ 10⁵ ≚

Run info for 10¹² fluence setting

Proton Target Si File Name Beam Type: Beam E (MeV): 64.0 dE/dx (MeV·cm²/g): 8.334 c:\ref user\UC Riverside\UC-Riverside 5-14-24.html Date: 5/14/202-5/14/2024 FC Lkg (A): -4.800E-13 ± 1.056E-13 8:46:03 SEM Lkg (A): 1.299E-11 ± 1.328E-12 8-47-05 EC/SEM Batio: 1.8896E+00 + 4.0255E-0 1.016E-08 1.751E-09 1.603E+02 9:00:35 789 401 1.336E+05 1.336E+05 1.001E+ L12 1.329E+05.1.329E+05 9.957E-1.684E+02 0.5 - 1.5 cm 1 303E+05 1 303E+05 1650E+02 15.25 cm

> Between 1.5 and 2.5 cm radius, the total fluence relative decreases by ~2.5% compared to r = 0

The absolute beam fluence is measured to about 2% precision.

7/8/2024

ELECTROMAGNETIC CALORIMETRY

SciFi/W - NOVEL TECHNOLOGY MOVING **TOWARDS COINSOLIDATION**

Pioneered for EIC and already used for **sPHENIX**

14

Same technology :

- in B0 far forward detector
- in luminosity pair spectrometer: first prototype realized!
- In low Q² taggers (far

ECAL Detec

PbW0₄ crystals - WIDELY **CONSOLIDATED TECHNOLOGY**

Backwards EMCal

PbW04 crystals, fine granularity

- Novel challenge: preserving the exceptional resolution adopting SiPM sensors
- Prototyping advanced and ready for testbeam validation \rightarrow unfortunately, no beam delivered

ELECTROMAGNETIC CALORIMETRY

HADRONIC CALORIMETRY

H Calorimetry in ePIC: Steel/scintillator sampling calorimetry

PARTICLE IDENTIFICATION - Cherenkov Imaging

PARTICLE IDENTIFICATION - Cherenkov Imaging

PARTICLE IDENTIFICATION - Cherenkov Imaging

And MORE ...

TC Report

• The organizational model of the ePIC detector

• ePIC detector aspects deserving emphasis: examples of recent progress

Summarizing

Take-away messages

- The ePIC detector is fully profiting of the opportunity offered by being, at the same time,
 - The EIC Project Detector
 - The ePIC Collaboration Detector
- The ePIC Collaboration
 - Brings in <u>scientific workforce</u>
 - Allows for a <u>holistic approach</u> (hardware complemented by simulation and physics studies)
 - Opens the way to <u>in-kind contributions</u>
- The subsystems are progressing thanks to the dedication and expertise of the ePIC Collaborators
 - <u>Adequate qualified expertise</u> is available for all the selected technologies thanks to the ePIC Collaborators

THE SOLENOID

Solenoid design :

- A combined effort Saclay JLab BNL
- groups with wide expertise in magnet design (magnets for accelerator/projects at CERN, Orsay, Jlab, BNL, …)

Realization :

- interest from Italy under investigation
- the considered Italian company realized the CMS solenoid and ~1/3 of the LHC dipoles

The combined EIC PROJECT and ePIC COLLABORATION efforts:

HOW?

ePIC engagement in EIC pre-TDR

- Enthusiastic contribution by the collaboration
- Domain of ePIC contributions:
 - Chapter 2 "Physics Goals and Requirements"
 - Chapter 8 "Experimental Systems"
- ePIC planning: with priority to preTDR, prepare in parallel 3 publications on high-rank scientific journals, reshaping the preTDR material and focusing on
 - The ePIC Detector (from chapter 8)
 - The ePIC detector performance for EIC physics scope (from chapter 2)
 - The ePIC software and computing model (from dedicated subsection in chapter 8)

ePIC engagement in EIC pre-TDR - STATUS

a flavor of the ePIC contribution to the pre-TDR draft

Electron Ion Collider	DRAFT
Preliminary Design Report	EIC PDR October 7, 2024
2 Physics Goals and Requirements	19
2.1 EIC Context and History	19
2.2 The Science Goals of the EIC and the Machine Parameters	20
2.3 Reconstruction Tools and Special Probes	20
2.3.1 Kinematic reconstruction	20
2.3.2 Electron identification and event selection	21
2.4 The EIC Science (ePIC performance for key observables)	22
2.4.1 Origin of Nucleon Mass	22
2.4.1.1 Inclusive neutral current cross sections	23
2.4.1.2 Upsilon production	23
2.4.2 Origin of Nucleon Spin	25
2.4.3 Multi-Dimensional Imaging of the Nucleon	26
2.4.3.1 Imaging in Momentum Space	26
2.4.5.2 Intaging in Transverse Fostuon Space	20
2.4.4.1 Gluon Saturation	
2.4.4.2 Nuclear Modifications of Parton Distribution Functions	32
2.4.4.3 Passage of Color Charge Through Cold QCD Matter	32
R Experimental Systems	34
81 Experimental Equipment Requirements Summary	34
82 General Detector Considerations and Operations Challenges	35
8.2.1 General Design Considerations	
8.2.2 Backgrounds and Rates	
8.2.3 Radiation Level	35
8.3 The ePIC Detector	35
8.3.1 Introduction	35
The Context	35
The Detector	36
Technological Synergistic Aspects of the Detector Design	40
8.3.2 Magnet	41
Requirements	41
Justification	41
	42
Additional Material	42
0.5.5 Hacking	42
8.3.3.1 The silicon trackers	43
Requirements	43
Iustification	44
Implementation	48
Additional Material	62
8332 The MPGD trackers	62
Requirements	. 62
	. 62
Instification	. 64
Performance	
Implementation	. 70
	. 76
834 Particle identification	. 76
8341 The time-of-flight layers	. 76
Requirements and Justifications	. 76

			~~~~	
	8.3.4.2	The proximity focusing RICH	96	8.3
		Requirements	96	
		Justification	98	
		Implementation	104	
		Additional Material	111	
	8.3.4.3	The high performance DIRC	111	
		Requirements	111	
		Justification	111	
	0244	The dual and inter DICU	112	
	0.3.4.4		113	
		Requirements	113	
		Justification	113	
		Performance	120	
		Implementation	122	
		Additional Material	136	
8.3.5	Electro	magnetic Calorimetry	141	
	8.3.5.1	The backward endcap electromagnetic calorimeter	142	
		Requirements	142	
		Justification	142	
		Implementation	145	8
		Additional Material	140	0.
	0050	The based also terror at a schedular terror.	147	
	8.3.5.2	The barrel electromagnetic calorimeter	150	
		Requirements	150	
		Justification	150	
		Implementation	159	
		Additional Material	165	
	8.3.5.3	The forward endcap electromagnetic calorimeter	171	
		Introduction	171	
836	Hadro	nic Calorimetry	183	
0.0.0	8361	The backward endcan badronic calorimeter	183	
	0.0.0.1	Paguiramente	192	
		Requirements	103	0
		Justincation	184	
		Implementation	188	
		Additional Material	194	
	8.3.6.2	The barrel hadronic calorimeter	197	
		Requirements	197	
		Justification	198	
		Performance	201	
		Implementation	202	
	8.3.6.3	The forward endcap hadronic calorimeter	217	
		Requirements	217	
		Instification	218	
		Implementation	221	
		Additional Material	221	
0.2.7	Eng for		224	
8.3.7	Far for	ward detectors	225	
	8.3.7.1	The detectors in the B0 bending magnet	225	
		Requirements	225	
		Justification	226	
		Implementation	227	_
		Additional Material	229	8
	8.3.7.2	The roman pots and the off-momentum detectors	229	
		Requirements	229	
		Iustification	230	
		Implementation	231	
		Additional Material	234	8.4
	8373	The zero degree calorimeter	234	
	0.5.7.5	Requiremente	234	85
		Invitigation	234	0.0
		Justification	230	
		Implementation	235	
		Additional Material	236	

1	8.3.8	Far backward detectors 23	6
		8.3.8.1 The luminosity system	7
		Beam Size Effect	7
		High rate of BH radiation and SR background	9
		Beam Polarisation	0
		Physical Constraints	0
		Systematic Uncertainties	1
		Design and Components	1
		Additional Material	6
		8.3.8.2 The low Q ² taggers	6
		Requirements	6
		8.3.8.3 TCS	7
		8.3.8.4 Vector Meson production	7
		8.3.8.5 Spectroscopy	7
		Justification	9
		Performance	2
		Implementation	3
		Additional Material	6
1	8.3.9	Polarimeters	6
		8.3.9.1 The electron polarimeters	7
		Requirements	7
		Justification	7
		Implementation 25	7
		Additional Material	8
		8.3.9.2 The proton polarimeters	8
		Requirements	8
		Justification	58
		Implementation	58
_		Additional Material	59
	8.3.10	Readout Electronics and Data Acquisition	<b>19</b>
		Requirements	<del>;9</del>
		Device Concept and Technological choice: Streaming Readout 26	<b>i3</b>
		Subsystem Description (components)	54
		Readout Electronics and ASICS	54
		Scope of the Effort 26	58
		FEB components	58
		RDOs	72
		DAM - Data Aggregation and Manipulation Hardware	74
		GTU - Global Timing Unit	75
		Protocols	76
		DAQ/Online Computing - Echelon 0	/8
		Slow Controls	51
		Implementation	51
		Status and remaining design effort:	\$2
		Environmental, Safety and Health (ES&H) aspects and Quality As-	
		Sessment (QA planning:	)∠ 20
		Construction and assembly planning:	9Z 92
	8 2 11	Software and Computing	4
	0.5.11	Paquiremente 20	7 <b>*</b>
		neurorenieus	4/1
		Instification	54 и
		Justification	54 34 24
		Justification 22 Justification 22 Implementation 22 Additional Material 22	54 34 34 35
	Det	Justification	54 34 34 35 35
	Dete 841	Justification	54 54 54 55 55 55
	Dete 8.4.1	Justification	54 54 34 35 35 35 35 35

#### 266 pages, 198 figures