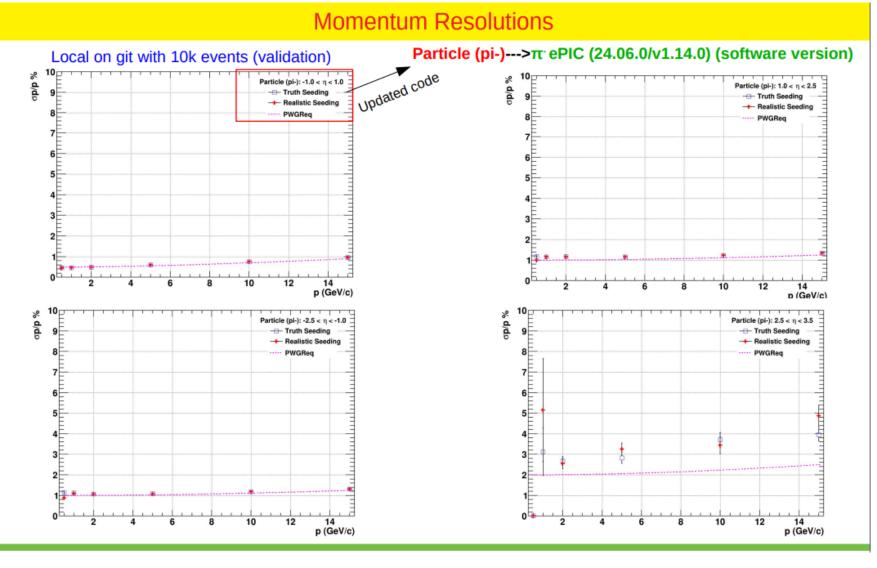
Summary of track reconstruction workfests in July 2024 ePIC collaboration meeting

Barak Schmookler

Session Overview


<	Thu 25/0	>	
		Print PDF Full screen Detailed view Filter	
	08:00	Introduction	Ø
		Rm 137, Rauch Business Center 08:00 - 08:15	
		Tracking (reconstruction workflow) Shujie Li	0
		Rm 137, Rauch Business Center 08:15 - 08:30	
		Calorimetry and Particle Flow (reconstruction workflow) Derek Anderson	0
		Rm 137, Rauch Business Center 08:30 - 08:45	
		Vertexing (reconstruction workflow) Nicolas Schmidt et al.	0
		Rm 137, Rauch Business Center 08:45 - 09:00	
	09:00	Electron ID (reconstruction workflow) Tyler Kutz	0
		Rm 137, Rauch Business Center 09:00 - 09:15	
		PID (reconstruction workflow) Chandradoy Chatterjee et al.	0
		Rm 137, Rauch Business Center 09:15 - 09:30	
		Far forward (reconstruction workflow) Alexander Jentsch	0
		Rm 137, Rauch Business Center 09:30 - 09:45	
		Coffee break	
		Rm 137, Rauch Business Center 09:45 - 10:00	
	10:00	Track-cluster matching (integration discussion) Tyler Kutz	
		Rm 137, Rauch Business Center 10:00 - 10:20	
		Cluster shape parameters (integration discussion)	
		Rm 137, Rauch Business Center 10:20 - 10:40	

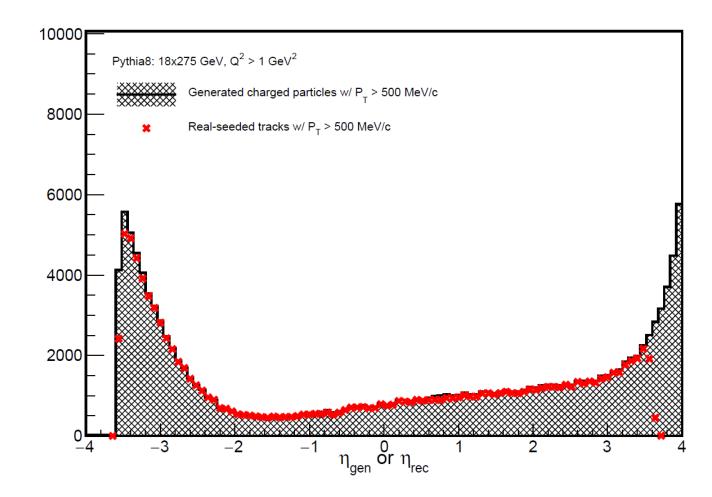
Fri 2	6/07					>
		🗏 Print	PDF	Full screen	Detailed view	Filter
13:00	Tracking and vertexing plots			Barak Schr	nookler et al. 0	
	Rm 91, Rausch Business Cente	n				13:00 - 13:30
	Single-particle tracking bench	nmarks			Shyam	Kumar et al. 0
	Rm 91, Rausch Business Cente	er (13:30 - 14:00
14:00	DIS tracking benchmark				Ba	rak Schmookler
	Rm 91, Rausch Business Cente	er (14:00 - 14:15
	Primary vertexing plots					Xin Dong 🤞
	Rm 91, Rausch Business Cente	er (14:15 - 14:30
	Discussion: primary-vertexing	g benchmark				
	Rm 91, Rausch Business Cente	er (14:30 - 14:45
	Discussion: Additional tracking	ng and vertexing devel	opment in EK	Recon		
	Rm 91, Rausch Business Cente	n -				14:45 - 15:00

15:00

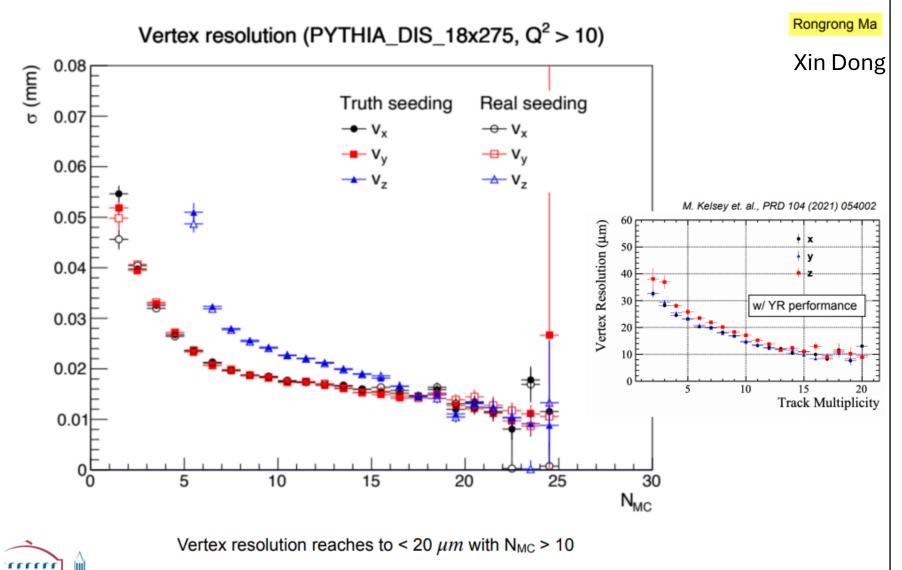
	D0 Tagged Jets	Diptanil Roy 🥖
	Rm 91, Rausch Business Center	15:20 - 15:35
	Vertexing Performance	Rongrong Ma 🥝
	Rm 91, Rausch Business Center	15:35 - 15:50
	Jet Benchmarks	Brian Page 🥝
16:00	Rm 91, Rausch Business Center	15:50 - 16:05
	Discussion: HF and Vertexing TDR Plots & AOB	
	Rm 91, Rausch Business Center	16:05 - 16:35

Single-particle track reconstruction benchmark

Tracking benchmark runs on EICweb and produces tracking performance results.

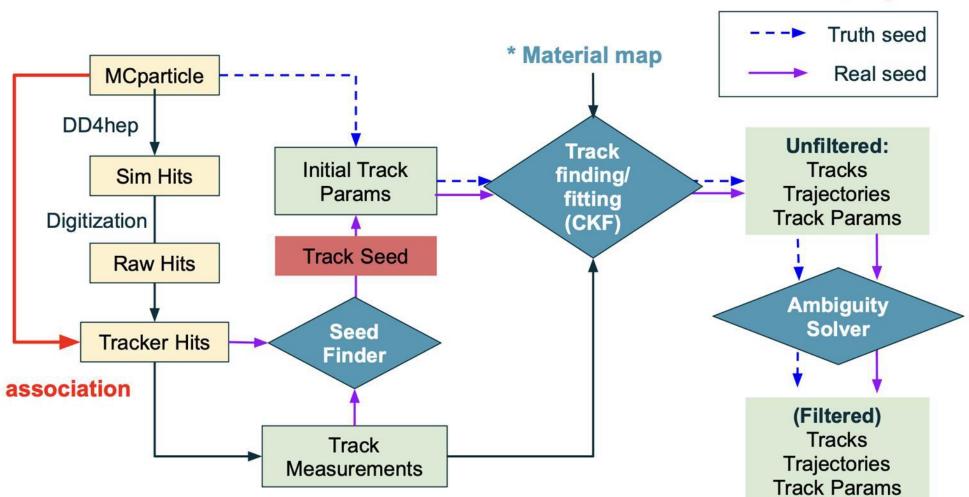

- Benchmark produces singleparticle momentum and pointing resolution plots.
- Now that all the machinery exists, the benchmark will be extended to include additional analysis codes for efficiency, angular resolutions, etc...
- Similar set of analysis codes will be run on monthly single-particle simulation campaigns.

Work by Shyam Kumar


DIS tracking benchmark

Benchmark under development

- Simulation of 50k Pythia8 events with Q² > 1 GeV² at the 18x275 GeV beam energy setting.
- **Black curve**: true pseudorapidity distribution of all generated, final-state charged particles with true transverse momentum >500 MeV/c.
- Red points: reconstructed pseudo-rapidity distribution of all <u>real-seeded tracks</u> with reconstructed transverse momentum >500 MeV/c.



Primary vertex resolutions – to go into benchmark

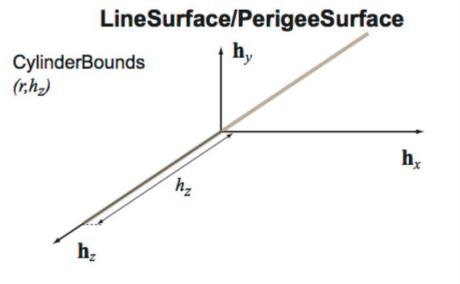
5

Track reconstruction / vertexing – status

Red: work in progress

ElCRecon – work in progress

- Fixes to the seed finder to address observed inefficiencies for |z|>50mm. ElCRecon branch; PR almost ready.
- Implementation of hit-based track to MC particle matching. <u>Relation between rec and raw tracker hits added</u>. All needed associations/relations exist; now need a factory to make association between track and MC Particle.
- Calculation of track distances/parameters w.r.t measured primary vertex. See next slide.
- Inclusion of option for noise hits and dead pixels in the SVT detector (also sensor unit with inactive area).


Track parameters w.r.t primary vertex

Perigee surface

class PerigeeSurface : public Acts::LineSurface

Class describing the Line to which the Perigee refers to.

The Surface axis is fixed to be the z-axis of the Tracking frame. It inherits from StraingLineSurface.

Class Acts::ImpactPointEstimator

template<typename input_track_t, typename propagator_t, typename propagator_options_t =
PropagatorOptions<>>
class Acts::ImpactPointEstimator

Estimator for impact point calculations.

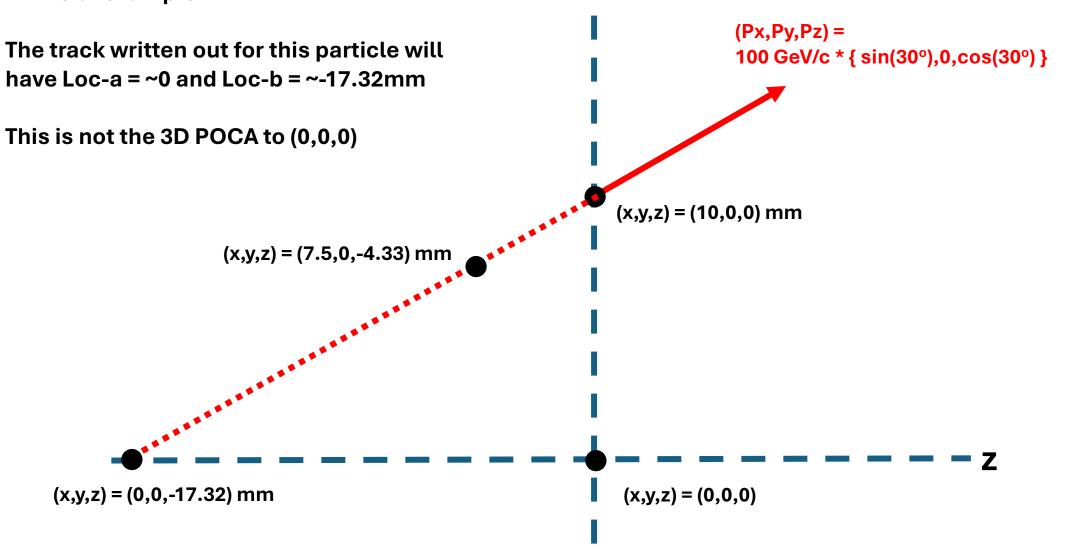
Public Functions

inline ImpactPointEstimator(const Config &cfg)

Constructor.

Parameters: cfg - Configuration object

Result<double> calculate3dDistance(const GeometryContext &gctx, const BoundTrackParameters &trkParams, const Vector3 &vtxPos, State &state) const


Calculates 3D distance between a track and a 3D point.

- Parameters: gctx The geometry context
 - trkParams Track parameters
 - vtxPos Position to calculate distance to
 - state The state object

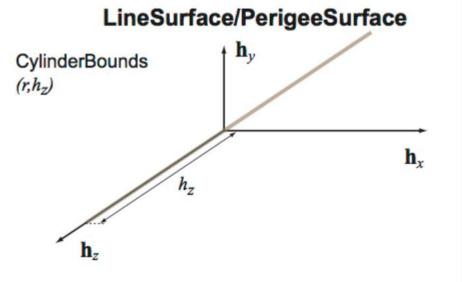
Returns: Distance

Prior to the vertexing, our track parameters are evaluated w.r.t. the perigee surface through (0,0,0)

Artificial example:

Χ

Track parameters w.r.t primary vertex


For tracks associated w/ primary vertex, can use either class. (Just make a perigee surface though the vertex.)

Perigee surface

class PerigeeSurface : public Acts::LineSurface

Class describing the Line to which the Perigee refers to.

The Surface axis is fixed to be the z-axis of the Tracking frame. It inherits from StraingLineSurface.

For secondary tracks, should use this to get 3D DCA to vertex.

Class Acts::ImpactPointEstimator

template<typename input_track_t, typename propagator_t, typename propagator_options_t =
PropagatorOptions<>>
class Acts::ImpactPointEstimator

Estimator for impact point calculations.

Public Functions

inline ImpactPointEstimator(const Config &cfg)

Constructor.

Parameters: cfg - Configuration object

Result<double> calculate3dDistance(const GeometryContext &gctx, const BoundTrackParameters &trkParams, const Vector3 &vtxPos, State &state) const

Calculates 3D distance between a track and a 3D point.

- Parameters: gctx The geometry context
 - trkParams Track parameters
 - vtxPos Position to calculate distance to
 - state The state object

Returns: Distance

Prior to the vertexing, our track parameters are evaluated w.r.t. the perigee surface through (0,0,0)

Sensor-oriented workfest summaries

<u>SVT</u>

https://indico.bnl.gov/event/20727/contributions/93074/attachments/56183/96165/20240727%20-%20ePIC%20SVT%20report.pdf

<u>MPGD</u>

https://indico.bnl.gov/event/20727/contributions/93067/attachments/56185/96157/MPGD_Workfest _Summary.pdf