ePIC full prototype boards

Dr. Simone M. Mazza (SCIPP, UC Santa Cruz)

Dr. Simone M. Mazza - University of California Santa Cruz

10/12/2018

ePIC new boards

- New 16 channel board arrived
- Based off FNAL 16ch boards
 - Two stage Gali-66
- Increased sensor mount pad for new large HPK prototypes
- 4 boards received, 10 more awaiting assembly
- Tested RMS of all channels
- Tested all channels with needle pulse injection
- One sensor mounted (still to be tested)

Issues

- HV pad is not fully metalized
 - Not a huge issue, sensors can still be biased
- HV pad NOT connected to high voltage
 - Need external connection (wire bond or soldered connection)
 - Might be an issue once we mount large prototypes
- HV with large hole (not in the design)
 - Not an issue with larger devices, might be an issue with current prototypes
- Not sure if this was a design flaw or design history and communication issues

Issues

- First stage amplifier work properly and show correct input bias V
- Biggest issues are the preamplifier, in particular some second stages
 - The amplifiers in red always show very large (100s mV) GHz oscillations, making them unusable
 - They have a reduced input bias V
 - This induce bad cross-talk also in the yellow amplifiers
- All 4 boards tested have issues on the same three amplifiers
 - Tried to replace the amplifiers and the issue is still there
 - If the red amplifiers are removed the rest of the board works correctly

Cause?

- It's a puzzle why 3 second stage amplifiers show a reduced input voltage that probably cause the oscillations
 - The power rail is the same for all second stage amplifiers
- All the rest of the channels show normal behavior and RMS noise
- There might be design or production issues with signal lines between 1st and 2nd stage amplifiers for these three amplifiers
 - At first look it doesn't seem to be an issue in the design, maybe a defect on the mask for the production

Options

- Top 8 channels of the board work fine + other 4-5 channels at the bottom. The board is partly working OK
 - Will test with an HPK sensor this week to verify performance
- Option 1: accept these boards but tell them not to load the faulty amplifiers, we'll receive them ~1 month and they'll work as 12 channel boards. Redo new improved boards with FY25 funds.
 - Pro: receive boards soon, no extra costs
 - Cons: only 12 channels, come other design flaws (external HV connection needed)
- **Option 2**: we spend time to find what is the design/production flaw, tell them to hold off on the loading and keep parts (parts and loading is the most expensive part). Re-do the PCB production and load those.
 - Pro: fix small design issue, full 16ch boards.
 - Cons: Unknown delay (need to find issue first + 1 month PCB production), need funds (1-2000\$).
- <u>Preferences?</u>

Raw data

7

Board 1

oard #	Channel #	Amplitifer 1 Input (V)	Amlitifer 1 Output (V)	Amplifier 2 Input (V)	Amplitifer 2 Output (V)	Rms (mV)	
1	1	2.6	3.5	2.6	3.5	1.	
	2	2.6	3.5	2.6	3.5	1.	
	3	2.6	3.5	2.6	3.5	1.	
	4	2.6	3.5	2.6	3.5	1.	
	5	2.6	3.5	2.6	3.5	1.	
	6	2.6	3.5	2.6	3.5	1.	
	7	2.6	3.5	2.6	3.5	1.	
	8	2.6	3.5	2.6	3.5	1.	
	9	2.56	3.4	2.4	3.2	1.	
	10	2.6	3.5	2.57	3.4	1.	
	11	2.6	3.5			500 uV	
	12	2.6	3.5	2.6	3.5	1.	
	13	2.6	3.5	2.6	3.5	1.	
	14	2.6	3.5			500 uV	
	15	2.4	3.2			500 uV	
	16	2.6	3.5	2.47	3.3	1.	

Board 2

Board #	Channel #	Amplitifer 1 Input (V)	Amlitifer 1 Output (V)	Amplifier 2 Input (V)	Amplitifer 2 Output (V)	Rms (mV)
2	1	2.6	3.5	2.6	3.5	1.6
	2	2.6	3.5	2.6	3.5	1.6
	3	2.6	3.5	2.6	3.5	1.6
	4	2.6	3.5	2.6	3.5	1.6
	5	2.6	3.5	2.6	3.5	1.7
	6	2.6	3.5	2.6	3.5	1.7
	7	2.6	3.5	2.6	3.5	1.7
	8	2.6	3.5	2.6	3.5	1.7
	9	2.56	3.4	2.5	3.3	13
	10	2.6	3.5	2.59	3.4	5
	11	2.6	3.5		0.1	3
	12	2.6	3.5	2.6	3.5	4
	12	2.6	3.5	2.6	3.5	24
	14	2.0	3.5	2.0	3.5	1
	15	2.0	3.0			1
	10	2.4	3.2			4
	10	2.0	3.5	2.5	3.3	700 UV

Board 3

Board #	Channel #	Amplitifer 1 Input (V)	Amlitifer 1 Output (V)	Amplifier 2 Input (V)	Amplitifer 2 Output (V)	Rms (mV)
3	1	2.6	3.45	2.6	3.45	1.7
	2	2.6	3.45	2.6	3.46	1.8
	3	2.6	3.45	2.6	3.45	4.5
	4	2.6	3.45	2.6	3.46	1.5
	5	2.6	3.45	2.6	3.46	1.6
	6	2.6	3.45	2.6	3.45	1.6
	7	2.6	3.45	2.6	3.45	1.5
	8	2.6	3.45	2.6	3.45	1.5
	9	2.56	3.4	2.46	3.23	N/A
	10	2.59	3.44	2.56	3.32	N/A
	11	2.6	3.45	2.57	3.36	N/A
	12	2.56	3.45	2.58	3.36	N/A
	13	2.56	3.45	2.57	3.41	N/A
	14	2.51	3.35	2.17	3.17	N/A
	15	2.52	3.35	2.29	3.11	N/A
	16	2.6	3.45	2.55	3.37	N/A