

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Venturing into the **Neutrino Fog**

Solar ⁸B neutrino search in XENONnT

Phys. Rev. Lett. 133, 191002

Dacheng Xu Columbia University Particle Physics Seminars @ BNL November 7th, 2024

Why DM and How to Search for it?

NASA, https://chandra.harvard.edu/photo/2006/1e0657/

Astrophysical and Cosmological evidence: Without dark matter, the night sky would be dark, and there would be no one to see it.

or detect the interaction of DM with Standard Model Particles.

Why DM and How to Search for it?

NASA, https://chandra.harvard.edu/photo/2006/1e0657/

Astrophysical and Cosmological evidence: Without dark matter, the night sky would be dark, and there would be no one to see it.

Prog.Part.Nucl.Phys. 119 (2021) 103865

Produce DM, wait for its annihilation, or detect the interaction of DM with Standard Model Particles.

Neutrino Fog for WIMP

- To-date no evidence for WIMPs so we have set limits
- Coherent elastic neutrino-nucleus scattering (CEvNS)
- Solar neutrino is the unavoidable background for DM

IN THE CITY OF NEW YORK

A

COHERENT, Science 357 (2017)

scintillation

Neutrino Fog for WIMP

- To-date no evidence for WIMPs so we have set limits
- Coherent elastic neutrino-nucleus scattering (CEvNS)
- Solar neutrino is the unavoidable background for DM

IN THE CITY OF NEW YORK

A

COHERENT, Science 357 (2017)

recoils

scintillation

dacheng.xu@columbia.edu

We were here

XENON Collaboration

- 200+ members
- 29 institutes
- 12 countries

dacheng.xu@columbia.edu

Content - Physics result & technical improvement

- Introduction
 - The XENONnT experiment, detector characteristic
- Signal & Background
 - Calibration in low energy nuclear recoil
 - Background: Accidental Coincidence(dominant), ER, Neutron, Surface
- Inference and Result

XENON Detector Principle

IN THE CITY OF NEW YORK

G d

- 3D position resolution via light (S1) and charge (S2) signals
- S1/S2 depends on particle type
- Fiducialization (select volume)

XENONnT Under the Gran Sasso

dacheng.xu@columbia.edu

Drift Length	Diameter	Sensitive Target	Fiducial Mass	Drift Field
1.5 m	1.32 m	5.9 tonne	~4 tonne	23 V/cm

Eur. Phys. J. C 84, 784 (2024)

Search for ⁸B CEvNS

- Use Science Run 0 & 1:
 - 108.0 days (SR0) + 208.5 days (SR1)
 - Fiducial mass: ~4 tonne
 - Exposure: ~3.5 t·y
- Perform blind analysis
 - The features of data will be hidden from analysts to ensure unbiased signal and background prediction

Signal & Background

• Discovery significance ~ S/\sqrt{B}

Calibration with Neutron Source: ⁸⁸YBe

- Excellent match between data and model
- Fit the NEST model with the ⁸⁸YBe data to predict the light and charge yield in the ⁸B CEvNS energy range at the XENONnT drift field

Calibration with Neutron Source: ⁸⁸YBe

Calibration with Mono-E Electronic Recoils

IN THE CITY OF NEW YORK

G d

Calibration with Mono-E Electronic Recoils

G d

⁸B CEvNS Signal Region of Interest

S1 Range: 2 & 3 hits

• A hit usually corresponds to a photon hitting the PMT and is recorded by our DAQ and software

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

dacheng.xu@columbia.edu

B CEVNS Signal Model

IN THE CITY OF NEW YORK

A

dacheng.xu@columbia.edu

B CEVNS Signal Model

dacheng.xu@columbia.edu

IN THE CITY OF NEW YORK

Q.

dacheng.xu@columbia.edu

Final background prediction (conservative):

- Rate estimated by full chain simulation \bullet
- Uncertainty is determined with sideband \bullet data tagged with Neutron Veto

dacheng.xu@columbia.edu

Final background prediction:

- SR0: 0.13±0.07 Events
- SR1: 0.33±0.19 Events

Surface Background

SR0 CEvNS-search Surface Background

dacheng.xu@columbia.edu

SR1 CEvNS-search Surface Background

Accidental Coincidence in XENONnT

Accidentally pair S1 and S2 peaks

Iso-S1 Rate	Iso-S2 Rate	T max
~ 15 Hz	~ 0.15 Hz	2.2 ms
		23 V

$$t) \cdot R_{S2}(t) \cdot T_{max}dt$$

In low energy NR ROI: (S1 2/3 hits, S2 from few to dozens electrons) Sig. Bkg. **Raw AC Rate** 5 mHz (~400/day)

> //cm drift field dacheng.xu@columbia.edu

Time Shadow - Quantify the cleanliness of the exposure

dacheng.xu@columbia.edu

Use in Inference

Suppress isolated peaks & Simulation

Isolated S1: 15 Hz \rightarrow 2.3 Hz

IN THE CITY OF NEW YORK

G d

S1/S2 Pulse shape into GBDT

Gradient Boosting Decision Tree

G d

- Trained with AC vs Simulated ⁸B
- Also use the S1BDT score and S2BDT score as inference dimensions

NS 23

Validation on ³⁷Ar datasets

Provide High AC Counts to validate the framework

K-shell EC (2.82 keV)

L-shell EC (0.27 keV)

Rarely detectable S1

Dataset	Predicted	Observed
PureAC	1522.7	1459
In-ROI	731.6	733
ACSideband	349.7	366

Validation on Science data ACSideband

Determine Systematic Uncertainty

Dataset	Predicted	Observed	p-value (4D)	Relativ Uncertai
SR0	122.7	121	0.33	9.0%
SR1	302.5	326	0.25	5.8%

Signal and Backgrounds Prediction

AC: Accidental Coincidence Background ER: Electronic Recoil Background

- Validated by AC-rich Sideband
- Uncertainty: 9% (SR0), 6% (SR1) ${\color{black}\bullet}$

NR: Nuclear Recoil Background

- Full-chain simulated
- 58% uncertainty from sideband

- Flat spectrum at O(0.1)keV
- 100% conservative uncertainty

⁸B: CEvNS Signal

- Yields calibrated from ⁸⁸YBe neutron source
- ~35% uncertainty from yields and efficiencies

Analysis Validation by Search for ³⁷Ar L-Shel

COLUMBIA UNIVERSITY G d IN THE CITY OF NEW YORK

Extended binned likelihood with $3^4 = 81$ bins

4D GoF p-value: 0.7 dacheng.xu@columbia.edu

Inference and Result

Unblind Result

Component	Nominal Expectation	Background + ⁸ B fit
AC - SR0	7.5 ± 0.7	7.4
AC - SR1	17.8 ± 1.0	17.9
ER	0.7 ± 0.7	0.5
NR	0.5 ± 0.3	0.5
Total Background	26.4 ± 1.4	26.3
⁸ B	11.9 ± 4.5	10.7
Observed	3	87

dacheng.xu@columbia.edu

The significance of the solar ⁸B neutrinos via CEvNS in XENONnT at 2.73σ 1/300 chance to be fluctuated background

Event distribution in important parameters

Set Constrain on solar ⁸B neutrinos flux and CEvNS cross-section

Constrain Light Dark Matter

- Another study based on same data
- First Search for Light Dark Matter in the Neutrino Fog with XENONnT
- arXiv: 2409.17868 submitted to PRL \bullet

Mainly by Shenyang Shi

Super-Kamiokande

dacheng.xu@columbia.edu

XENONnT:

The Smallest Solar Neutrino Detector

Summary and Outlook

IN THE CITY OF NEW YORK

• Check our paper online:

- Phys. Rev. Lett. 133, 191002
- With more exposure, we expect to measure the solar ⁸B neutrinos at higher significance and to better constrain its flux.

Thanks for listening!

Summary and Outlook

Supplementary

Content - Physics result & technical improvement

- Introduction
 - The XENONnT experiment, detector characteristic
- Signal & Background
 - Calibration in low energy nuclear recoil
 - Background: Accidental Coincidence(dominant), ER, Neutron Surface
- Inference and Result

High Liquid XENON Purity

IN THE CITY OF NEW YORK

Q.

XENONnT maintains high electron lifetime thanks to its

XENONnT Science Data

Both SR0 and SR1 data are used to search for solar ⁸B CEvNS and WIMPs Dark Matter, etc

exposure [days]

Raw

COLUMBIA UNIVERSITY (del IN THE CITY OF NEW YORK

Model Validation & Systematic Error

Test the mode with AC-rich datasets

- Build events longer than the TPC, thus build Pure-AC events
- In high rate calibration data
- In science search data, select events which only failed anti-AC cuts: ACSideband

dacheng.xu@columbia.edu

Pass all selection

In-ROI

Fail Anti-AC cut

AC Sideband

Final Prediction & Projected Discovery Potential

dacheng.xu@columbia.edu

We expect to see solar ⁸B neutrinos at $>2(3)\sigma$ significance with a probability of 0.80 (0.48), with a full 4-D analysis

Set Constrain on CEvNS Cross section of Xe

Time + Position Shadow

Cut threshold set to remove the worst 20% of time & space

Fuse: Framework for Unified Simulation of Events

COLUMBIA UNIVERSITY A IN THE CITY OF NEW YORK

S1/S2 Pulse shape into GBDT

dacheng.xu@columbia.edu

S1/S2 Pulse shape into GBDT

- Trained with IsoS1 vs. Simulated ⁸B S1
- Utilize this discrimination power in the inference. So do the remaining parameter space of the TimeShadow and S2BDT cut.

ACSideband and new S2 threshold: 120PE

IN THE CITY OF NEW YORK

()

Stability of XENONnT During Science Runs

Stability of XENONnT is well established in both SR0 and SR1

dacheng.xu@columbia.edu

