Study of primary vertexing performance in DIS events

Rongrong Ma for the vertexing group 08/28/2024

Truth vs. real seeding

Efficiency vs. N_{MC}

Resolution vs. N_{MC}

✓ Switch to realistic seeding as default. (<u>PR #1605</u> ongoing)

Associate tracks with vertex

- List of tracks used to reconstruct a vertex is now accessible
- Merged into main branch on Aug. 26 (<u>PR #1576</u>)

```
edm4eic::Vertex:
Description: "EIC vertex"
 Author: "J. Osborn"
 Members:
                                      // Type flag, to identify what type of vertex it is (e.g. primary, secondary, generated, etc.)
   - int32 t
                         type
                                      // Chi-squared of the vertex fit
   - float
                        chi2
   - int
                        ndf
                                      // NDF of the vertex fit
  - edm4hep::Vector4f
                                      // position [mm] + time t0 [ns] of the vertex. Time is 4th component in vector
                        position
  ## this is named "covMatrix" in EDM4hep, renamed for consistency with the rest of edm4eic
                        positionError // Covariance matrix of the position+time. Time is 4th component, similarly to 4vector
   - edm4eic::Cov4f
OneToManyRelations:
  - edm4eic::ReconstructedParticle associatedParticles // particles associated to this vertex.
```

Analysis setup

- PYTHIA ep 18x275
- Vertex position: afterburner to apply beam effects
- $Q^2 > 10 \text{ GeV}^2$
- EIC geometry: *epic-24.06.0*
- EICrecon: branch *vertexing_group*
- Real seeding

Vertex multiplicity distribution

Number of reconstructed vertices

 ✓ Suggestion: select the first vertex in the vertex array as the primary vertex

• For events with 2 vertices

- Case 1: almost half of the time, the two vertices are very close to each other, resulting from vertex splitting
- Case 2: one vertex is pulled away from MC vertex by secondary tracks
- Case 3: the second vertex corresponds to weak decays

RC vertex distributions

✓ Suggested vertex cuts:

- $\sqrt{(v_x^2 + v_y^2)} < 3 \text{ mm}$
- $|v_z| < 100 \text{ mm}$

 χ^2 /ndf correlation

 χ^2 /ndf cut efficiencies

90 100 χ^2 /ndf cut

70

80

100

- ✓ Suggested vertex cut (optional):
 - $\chi^2/ndf < 20$ to cut out the tail

Suggested vertex cuts for analysis

Event statistics (normalized to # of generated events)

Vertex performance

Efficiency vs. N_{MC}

Resolution vs. N_{MC}

- High vertex finding efficiency at high multiplicity
- About 15 µm resolution at high multiplicity

Summary

- EICrecon
 - Switch to realistic seeding Ongoing
 - Associate tracks with vertex Done
- Suggested vertex selection cuts:
 - Choose the first vertex in the vertex array as the primary vertex
 - $|v_z| < 100 \text{ mm}; \sqrt{(v_x^2 + v_y^2)} < 3 \text{ mm}$
 - $\chi^2/ndf < 20$ (optional)
- Good primary vertex performance
- Outlook
 - Develop vertex benchmark
 - Further tune the vertex reconstruction and vertex selection cuts using events with pileup

Backup

Definitions

- N_{MC} = number of charged final-state MC particles within $|\eta| < 3.5$ that are associated with the MC vertex
 - Particle production vertex within 1e⁻⁴ mm of the MC vertex
- N_{trk} or N_{RC} = number of charged tracks used to reconstruct the vertex