Cheng-Wei Shih

National Central University & RIKEN

Aug 21th, 2024 INTT meeting **sPHENIX THENIX**

Vertex reconstruction by INTT

C C

Analyzed data `

- Analyzed run: 20869 (from run 23)
- Configuration: zero-filed, vertex Z off by -20 cm
- Data file : /sphenix/lustre01/sphnxpro/commissioning/INTT/beam/ beam_intt{0..7}-00020869-0000.evt
- Simulation file: /sphenix/user/hjheng/sPHENIXRepo/analysis/dNdEta_Run2023/ production/Sim_Ntuple_HIJING_new_20240424/ntuple_00{000..199}.root

2

Average vertex XY - approach 1 `

- The one with better **Polynomial 0 fit errors** on both
	- DCA Cluinner Φ correlation, and
	- Δφ Clu_{inner} φ correlation

-
- **• Procedures:**
	- 1. Define the searching window
	- 2. In each iteration, try with 4 corners
	- 3. Move to the quadrant that gives better performance, and narrow the searching window half
	- 4. Repeat the procedure with the new 4 corners

Average vertex XY - approach 1 `

- The one with better **Polynomial 0 fit errors** on both
	- DCA Cluinner Φ correlation, and
	- Δφ Cluinner Φ correlation

-
- **• Procedures:**
	- 1. Define the searching window
	- 2. In each iteration, try with 4 corners
	- 3. Move to the quadrant that gives better performance, and narrow the searching window half
	- 4. Repeat the procedure with the new 4 corners

Average vertex XY - approach 1 `

- The one with better **Polynomial 0 fit errors** on both
	- DCA Cluinner Φ correlation, and
	- Δφ Cluinner Φ correlation

-
- **• Procedures:**
	- 1. Define the searching window
	- 2. In each iteration, try with 4 corners
	- 3. Move to the quadrant that gives better performance, and narrow the searching window half
	- 4. Repeat the procedure with the new 4 corners

Average vertex XY - approach 1 `

- The one with better **Polynomial 0 fit errors** on both
	- DCA Cluinner Φ correlation, and
	- Δφ Cluinner Φ correlation

-
- **• Procedures:**
	- 1. Define the searching window
	- 2. In each iteration, try with 4 corners
	- 3. Move to the quadrant that gives better performance, and narrow the searching window half
	- 4. Repeat the procedure with the new 4 corners

Average vertex XY - approach 1 `

- The one with better **Polynomial 0 fit errors** on both
	- DCA Cluinner Φ correlation, and
	- Δφ Cluinner Φ correlation

-
- **• Procedures:**
	- 1. Define the searching window
	- 2. In each iteration, try with 4 corners
	- 3. Move to the quadrant that gives better performance, and narrow the searching window half
	- 4. Repeat the procedure with the new 4 corners

- The one with better **Polynomial 0 fit errors** on both
	- DCA Cluinner Φ correlation, and
	- Δφ Clu_{inner} φ correlation

Average vertex XY - approach 1

- **• Approach 1:** Quadrant method
- **• Procedures:**
	- 1. Define the searching window
	- 2. In each iteration, try with 4 corners
	- 3. Move to the quadrant that gives better performance, and narrow the searching window half
	- 4. Repeat the procedure with the new 4 corners

• How to determine the "good" vertex ?

Two correlation plots for **each corner**

Average vertex XY - approach 1 `

5

• Approach 1: Quadrant method

The fit error getting smaller in the deeper iteration

Average vertex XY - approach 1 `

MC set beam spot : -0.04 cm, 0.24 cm Measured beam spot : -0.0405 cm, 0.2402 cm

• Approach 1: Quadrant method

Average vertex XY - approach 2 `

- **• Approach 2:** Line-filled method
- **• Purpose:** crosscheck
- **• Ideal:** vertex can be obtained by populating the tracklets into a 2D histogram
- **• Procedures:**
	- 1. Define the searching window. Nominally, 3 mm x 3mm, center given by Approach 1
	- 2. Fill the trajectories of tracklets with ∆ɸ < 5 degrees
	- 3. Remove the background
	- 4. Take the averages of both axes as the vertex position XY

Average vertex XY - approach 2

- **• Approach 2:** Line-filled method
- **• Purpose:** crosscheck
- **• Ideal:** vertex can be obtained by populating the tracklets into a 2D histogram
- **• Procedures:**
	- 1. Define the searching window. Nominally, 3 mm x 3mm, center given by Approach 1
	- 2. Fill the trajectories of tracklets with ∆ɸ < 5 degrees
	- 3. Remove the background
	- 4. Take the averages of both axes as the vertex position XY

SPHE

Final average vertex XY - MC `

- Quadrant method + 2D line filled method
	- 20 < selected_NClus < 350
	- 15k events per data point
	- Take the total average as the final avg vtxXY

final average vertex XY should be used : line filled X : -0.0402675 +/- 0.000456319 line filled Y : 0.240015 +/- 0.000535473 quadrant X : -0.0403125 +/- 0.00171163 quadrant Y : 0.239687 +/- 0.00139754

Avg: {-0.04029 * cm, 0.239851 * cm} Setting: {-0.04 cm, 0.24 cm}

Event ID

Final average vertex XY - data `

- Quadrant method + 2D line filled method
	- 20 < selected_NClus < 350
	- 15k events per data point
	- Take the total average as the final avg vtxXY

final average vertex XY should be used : line filled X : -0.0223385 +/- 0.00158029 line filled Y : 0.274166 +/- 0.00212953 quadrant X : -0.0190104 +/- 0.00560886 quadrant Y : 0.285764 +/- 0.00684427

Avg: {-0.0206744 * cm, 0.279965 * cm}

11

• Idea given by Akiba san. For each combination, take into account of the distribution of the possible vertex Z range, and normalize the distribution, and fill into the histogram. (Used to assume the Uniform distribution of the vertex Z)

Per-event vertex Z reconstruction $\frac{1}{\text{SPE}}$

For each combination

Strip in inner barrel

Strip in outer barrel

Per-event vertex Z ` **reconstruction**

11

Idea given by Akiba san. For each combination, take into account of the distribution of the possible vertex Z range, and normalize the distribution, and fill into the histogram. (Used to assume the Uniform distribution of the vertex Z)

Caveat: for each combination in single event, have to have the shape, and fill that into histogram, not trivial…

For each combination

Strip in inner barrel

Strip in outer barrel

11

Idea given by Akiba san. For each combination, take into account of the distribution of the possible vertex Z range, and normalize the distribution, and fill into the histogram. (Used to assume the Uniform distribution of the vertex Z)

Caveat: for each combination in single event, have to have the shape, and fill that into histogram, not trivial…

Per-event vertex Z reconstruction \blacksquare

For each combination

Strip in outer barrel

11

Idea given by Akiba san. For each combination, take into account of the distribution of the possible vertex Z range, and normalize the distribution, and fill into the histogram. (Used to assume the Uniform distribution of the vertex Z)

Caveat: for each combination in single event, have to have the shape, and fill that into histogram, not trivial…

Per-event vertex Z reconstruction $\frac{1}{\text{SPE}}$

11

Idea given by Akiba san. For each combination, take into account of the distribution of the possible vertex Z range, and normalize the distribution, and fill into the histogram. (Used to assume the Uniform distribution of the vertex Z)

Caveat: for each combination in single event, have to have the shape, and fill that into histogram, not trivial…

Per-event vertex Z reconstruction $\frac{1}{\text{SPE}}$

11

• Idea given by Akiba san. For each combination, take into account of the distribution of the possible vertex Z range, and normalize the distribution, and fill into the histogram. (Used to assume the Uniform distribution of the vertex Z)

Caveat: for each combination in single event, have to have the shape, and fill that into histogram, not trivial…

Per-event vertex Z reconstruction $\frac{1}{\text{SPE}}$

11

• Idea given by Akiba san. For each combination, take into account of the distribution of the possible vertex Z range, and normalize the distribution, and fill into the histogram. (Used to assume the Uniform distribution of the vertex Z)

Caveat: for each combination in single event, have to have the shape, and fill that into histogram, not trivial…

Per-event vertex Z reconstruction $\frac{1}{\text{SPE}}$

11

• Idea given by Akiba san. For each combination, take into account of the distribution of the possible vertex Z range, and normalize the distribution, and fill into the histogram. (Used to assume the Uniform distribution of the vertex Z)

Caveat: for each combination in single event, have to have the shape, and fill that into histogram, not trivial…

Per-event vertex Z reconstruction $\frac{1}{\text{SPE}}$

11

• Idea given by Akiba san. For each combination, take into account of the distribution of the possible vertex Z range, and normalize the distribution, and fill into the histogram. (Used to assume the Uniform distribution of the vertex Z)

Caveat: for each combination in single event, have to have the shape, and fill that into histogram, not trivial…

Per-event vertex Z reconstruction $\frac{1}{\text{SPE}}$

11

• Idea given by Akiba san. For each combination, take into account of the distribution of the possible vertex Z range, and normalize the distribution, and fill into the histogram. (Used to assume the Uniform distribution of the vertex Z)

Caveat: for each combination in single event, have to have the shape, and fill that into histogram, not trivial…

Per-event vertex Z reconstruction $\frac{1}{\text{SPE}}$

11

• Idea given by Akiba san. For each combination, take into account of the distribution of the possible vertex Z range, and normalize the distribution, and fill into the histogram. (Used to assume the Uniform distribution of the vertex Z)

Caveat: for each combination in single event, have to have the shape, and fill that into histogram, not trivial…

Per-event vertex Z reconstruction $\frac{1}{\text{SPE}}$

11

• Idea given by Akiba san. For each combination, take into account of the distribution of the possible vertex Z range, and normalize the distribution, and fill into the histogram. (Used to assume the Uniform distribution of the vertex Z)

Caveat: for each combination in single event, have to have the shape, and fill that into histogram, not trivial…

Per-event vertex Z reconstruction $\frac{1}{\text{SPE}}$

11

• Idea given by Akiba san. For each combination, take into account of the distribution of the possible vertex Z range, and normalize the distribution, and fill into the histogram. (Used to assume the Uniform distribution of the vertex Z)

Caveat: for each combination in single event, have to have the shape, and fill that into histogram, not trivial…

Per-event vertex Z reconstruction $\frac{1}{\text{SPE}}$

11

• Idea given by Akiba san. For each combination, take into account of the distribution of the possible vertex Z range, and normalize the distribution, and fill into the histogram. (Used to assume the Uniform distribution of the vertex Z)

Caveat: for each combination in single event, have to have the shape, and fill that into histogram, not trivial…

Per-event vertex Z reconstruction $\frac{1}{\text{SPE}}$

11

Idea given by Akiba san. For each combination, take into account of the distribution of the possible vertex Z range, and normalize the distribution, and fill into the histogram. (Used to assume the Uniform distribution of the vertex Z)

Caveat: for each combination in single event, have to have the shape, and fill that into histogram, not trivial…

Per-event vertex Z reconstruction $\frac{1}{2}$

For each combination

Trapezoidal shape for each combination

12

Per-event vertex Z reconstruction $\frac{1}{2}$

- Correct the cluster ɸ based on the reconstructed average vertex XY
- Loop over the combination, and keep the combinations with $\Delta \phi \leq \phi_{\text{cut}}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

12

Per-event vertex Z reconstruction $\frac{1}{\mathbf{SPE}}$

- Correct the cluster ɸ based on the reconstructed average vertex XY
- Loop over the combination, and keep the combinations with $\Delta \phi \leq \phi_{\text{cut}}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

Per-event vertex Z ` **reconstruction**

12

- Correct the cluster ɸ based on the reconstructed average vertex XY
- Loop over the combination, and keep the combinations with $\Delta \phi \leq \phi_{\text{cut}}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

Per-event vertex Z ` **reconstruction**

12

- Correct the cluster ɸ based on the reconstructed average vertex XY
- Loop over the combination, and keep the combinations with $\Delta \phi \leq \phi_{\text{cut}}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

12

Per-event vertex Z reconstruction FRACE

- Correct the cluster ɸ based on the reconstructed average vertex XY
- Loop over the combination, and keep the combinations with $\Delta \phi \leq \phi_{\text{cut}}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

12

Per-event vertex Z reconstruction $\frac{1}{\text{SPIPE}}$

- Correct the cluster ɸ based on the reconstructed average vertex XY
- Loop over the combination, and keep the combinations with $\Delta \phi \leq \phi_{\text{cut}}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

12

Per-event vertex Z reconstruction $\frac{1}{\mathbf{SPE}}$

- Correct the cluster ɸ based on the reconstructed average vertex XY
- Loop over the combination, and keep the combinations with $\Delta \phi \leq \phi_{\text{cut}}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

12

Per-event vertex Z reconstruction SPHE

- Correct the cluster ɸ based on the reconstructed average vertex XY
- Loop over the combination, and keep the combinations with $\Delta \phi \leq \phi_{\text{cut}}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

12

Per-event vertex Z reconstruction $\frac{1}{2}$

- Correct the cluster ɸ based on the reconstructed average vertex XY
- Loop over the combination, and keep the combinations with $\Delta \phi \leq \phi_{\text{cut}}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

Per-event vertex Z reconstruction

Final vertex Z given by average of 7 gaussian fits with the fit ranges of "mean ±(0.2 + 0.15 x i) x **the_50%_width**"

Per-event vertex Z reconstruction FRACE SPHE

MC zvtx setting: Gaussian (-20 cm, 5 cm) zvtx rage $: -30$ cm ~ 0 cm

The higher multiplicity the more accurate vertex Z determined 1.7 mm resolution in the region of number of clusters > 1000

Per-event vertex Z reconstruction

SPHEN

The wiggling structure due to the fact that the collisions happened near the edge of INTT

16

Per-event vertex Z reconstruction Example 19 SPHENIX

Data

SPHEN

Per-event vertex Z reconstruction

The comparison between MBD reco. vertex Z

Data

The optimization of vertex Z determination `

- New trial: after having the histograms made of possible vertex Z ranges, use ML (XGBoost) to do the final vertex Z determination
- Training variables: the content of each bin of the histogram post the 50% entry cut (2401) variables currently, corresponding to the number of bins of histogram)
- Total MC events: 80k (75% training, 25% testing)

The optimization of vertex Z determination `

The test sample 25% of the total MC events

Reco. vertex Z predicted by training model Reco. vertex Z by 7 Gaus fittings

True vertex Z [cm]

Number of cluster* > 800

20

- Reco. vertex Z predicted by training model
- Reco. vertex Z by 7 Gaus fittings

The optimization of vertex Z determination SPHENIX

The test sample 20% of the total MC events

Entries

Links `

-
- [The analysis code for the INTT vertex reconstruction: https://github.com/sPHENIX-](https://github.com/sPHENIX-Collaboration/analysis/tree/master/dNdEta_Run2023/analysis_INTT_CW)[Collaboration/analysis/tree/master/dNdEta_Run2023/analysis_INTT_CW](https://github.com/sPHENIX-Collaboration/analysis/tree/master/dNdEta_Run2023/analysis_INTT_CW)

• The link to analysis note: <https://www.overleaf.com/project/66c2de6290ee43c025eb17f1>

` **INTT geometry**

INTT: 2 sensors X 2 sides of half-ladders X 56 ladders = 224 sensors

Notation: B_xL_{yzz} x: Barrel ID (0 for inner or 1 for outer) y: Layer ID (0 for inner or 1 for outer) zz: Ladder ID (from 0 to 15)

Axis (Right-haded coordinate) x-axis: $\vec{y} \times \vec{z}$ y-axis: Vertically upward direction

