National Central University & RIKEN

Aug 21th, 2024 INTT meeting

Vertex reconstruction by INTT

Cheng-Wei Shih

Analyzed data

- Analyzed run: 20869 (from run 23)
- Configuration: zero-filed, vertex Z off by -20 cm
- Data file : /sphenix/lustre01/sphnxpro/commissioning/INTT/beam/ beam_intt{0..7}-00020869-0000.evt
- Simulation file: /sphenix/user/hjheng/sPHENIXRepo/analysis/dNdEta_Run2023/ production/Sim_Ntuple_HIJING_new_20240424/ntuple_00{000..199}.root

SPHE

Cheng-Wei Shih (NCU, Taiwan)

- Approach 1: Quadrant method
- **Procedures:**
 - 1. Define the searching window
 - 2. In each iteration, try with 4 corners
 - 3. Move to the quadrant that gives better performance, and narrow the searching window half
 - 4. Repeat the procedure with the new 4 corners

How to determine the "good" vertex ?

- The one with better Polynomial 0 fit errors on both
 - DCA Clu_{inner} ϕ correlation, and
 - $\Delta \phi$ Clu_{inner} ϕ correlation

SPHE

- Approach 1: Quadrant method
- **Procedures:**
 - 1. Define the searching window
 - 2. In each iteration, try with 4 corners
 - 3. Move to the quadrant that gives better performance, and narrow the searching window half
 - 4. Repeat the procedure with the new 4 corners

How to determine the "good" vertex ?

- The one with better **Polynomial 0 fit errors** on both
 - DCA Clu_{inner} ϕ correlation, and
 - $\Delta \phi$ Clu_{inner} ϕ correlation

- Approach 1: Quadrant method
- **Procedures:**
 - 1. Define the searching window
 - 2. In each iteration, try with 4 corners
 - 3. Move to the quadrant that gives better performance, and narrow the searching window half
 - 4. Repeat the procedure with the new 4 corners

How to determine the "good" vertex ?

- The one with better Polynomial 0 fit errors on both
 - DCA Clu_{inner} ϕ correlation, and
 - $\Delta \phi$ Clu_{inner} ϕ correlation

- Approach 1: Quadrant method
- **Procedures:**
 - 1. Define the searching window
 - 2. In each iteration, try with 4 corners
 - 3. Move to the quadrant that gives better performance, and narrow the searching window half
 - 4. Repeat the procedure with the new 4 corners

How to determine the "good" vertex ?

- The one with better Polynomial 0 fit errors on both
 - DCA Clu_{inner} ϕ correlation, and
 - $\Delta \phi$ Clu_{inner} ϕ correlation

- Approach 1: Quadrant method
- **Procedures:**
 - 1. Define the searching window
 - 2. In each iteration, try with 4 corners
 - 3. Move to the quadrant that gives better performance, and narrow the searching window half
 - 4. Repeat the procedure with the new 4 corners

How to determine the "good" vertex ?

- The one with better Polynomial 0 fit errors on both
 - DCA Clu_{inner} ϕ correlation, and
 - $\Delta \phi$ Clu_{inner} ϕ correlation

- Approach 1: Quadrant method
- **Procedures:**
 - 1. Define the searching window
 - 2. In each iteration, try with 4 corners
 - 3. Move to the quadrant that gives better performance, and narrow the searching window half
 - 4. Repeat the procedure with the new 4 corners

How to determine the "good" vertex ?

- The one with better Polynomial 0 fit errors on both
 - DCA Clu_{inner} ϕ correlation, and
 - $\Delta \phi$ Clu_{inner} ϕ correlation

Two correlation plots for each corner

• Approach 1: Quadrant method

The fit error getting smaller in the deeper iteration

Cheng-Wei Shih (NCU, Taiwan)

SPHEN

• Approach 1: Quadrant method

Inner cluster Φ [radian]

MC set beam spot : -0.04 cm, 0.24 cm Measured beam spot : -0.0405 cm, 0.2402 cm

Cheng-Wei Shih (NCU, Taiwan)

- Approach 2: Line-filled method
- **Purpose:** crosscheck
- **Ideal:** vertex can be obtained by populating the tracklets into a 2D histogram
- **Procedures:**
 - 1. Define the searching window. Nominally, 3 mm x 3mm, center given by Approach 1
 - 2. Fill the trajectories of tracklets with $\Delta \phi < 5$ degrees
 - 3. Remove the background
 - 4. Take the averages of both axes as the vertex position XY

Demonstration of Line-filled method 20 High population 18 16 14 12 10 0 16 12 14 20 18 8 10 2

If the variation of the vertex is small, the tracklets can tell the position

- Approach 2: Line-filled method
- **Purpose:** crosscheck
- Ideal: vertex can be obtained by populating the tracklets into a 2D histogram
- **Procedures:**
 - 1. Define the searching window. Nominally, 3 mm x 3mm, center given by Approach 1
 - 2. Fill the trajectories of tracklets with $\Delta \phi < 5$ degrees
 - 3. Remove the background
 - Take the averages of both axes as the 4. vertex position XY

SPHE

Final average vertex XY - MC

- Quadrant method + 2D line filled method
 - $20 < selected_NClus < 350$
 - 15k events per data point
 - Take the total average as the final avg vtxXY

final average vertex XY should be used : line filled X : -0.0402675 +/- 0.000456319 line filled Y : 0.240015 +/- 0.000535473 quadrant X : -0.0403125 +/- 0.00171163 quadrant Y : 0.239687 +/- 0.00139754

Avg: {-0.04029 * cm, 0.239851 * cm} Setting: {-0.04 cm, 0.24 cm}

Final average vertex XY - data

- Quadrant method + 2D line filled method
 - $20 < selected_NClus < 350$
 - 15k events per data point
 - Take the total average as the final avg vtxXY

final average vertex XY should be used : line filled X : -0.0223385 +/- 0.00158029 line filled Y : 0.274166 +/- 0.00212953 quadrant X : -0.0190104 +/- 0.00560886 quadrant Y : 0.285764 +/- 0.00684427

Avg: {-0.0206744 * cm, 0.279965 * cm}

For each combination

Strip in outer barrel

Strip in inner barrel

Cheng-Wei Shih (NCU, Taiwan)

Idea given by Akiba san. For each combination, take into account of the distribution of the possible vertex Z range, and normalize the distribution, and fill into the histogram. (Used to assume the Uniform distribution of the vertex Z)

For each combination

Strip in outer barrel

Strip in inner barrel

Caveat: for each combination in single event, have to have the shape, and fill that into histogram, not trivial...

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

Idea given by Akiba san. For each combination, take into account of the distribution of the possible vertex Z range, and normalize the distribution, and fill into the histogram. (Used to assume the Uniform distribution of the vertex Z)

For each combination

Strip in outer barrel

Caveat: for each combination in single event, have to have the shape, and fill that into histogram, not trivial...

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

Idea given by Akiba san. For each combination, take into account of the distribution of the possible vertex Z range, and normalize the distribution, and fill into the histogram. (Used to assume the Uniform distribution of the vertex Z)

For each combination Strip in outer barrel Strip in inner barrel Radius

Caveat: for each combination in single event, have to have the shape, and fill that into histogram, not trivial...

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

Idea given by Akiba san. For each combination, take into account of the distribution of the possible vertex Z range, and normalize the distribution, and fill into the histogram. (Used to assume the Uniform distribution of the vertex Z)

For each combination

Caveat: for each combination in single event, have to have the shape, and fill that into histogram, not trivial...

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

Idea given by Akiba san. For each combination, take into account of the distribution of the possible vertex Z range, and normalize the distribution, and fill into the histogram. (Used to assume the Uniform distribution of the vertex Z)

For each combination

Caveat: for each combination in single event, have to have the shape, and fill that into histogram, not trivial...

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

Idea given by Akiba san. For each combination, take into account of the distribution of the possible vertex Z range, and normalize the distribution, and fill into the histogram. (Used to assume the Uniform distribution of the vertex Z)

For each combination

Caveat: for each combination in single event, have to have the shape, and fill that into histogram, not trivial...

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

Idea given by Akiba san. For each combination, take into account of the distribution of the possible vertex Z range, and normalize the distribution, and fill into the histogram. (Used to assume the Uniform distribution of the vertex Z)

For each combination

Caveat: for each combination in single event, have to have the shape, and fill that into histogram, not trivial...

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

Idea given by Akiba san. For each combination, take into account of the distribution of the possible vertex Z range, and normalize the distribution, and fill into the histogram. (Used to assume the Uniform distribution of the vertex Z)

For each combination

Caveat: for each combination in single event, have to have the shape, and fill that into histogram, not trivial...

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

Idea given by Akiba san. For each combination, take into account of the distribution of the possible vertex Z range, and normalize the distribution, and fill into the histogram. (Used to assume the Uniform distribution of the vertex Z)

For each combination

Caveat: for each combination in single event, have to have the shape, and fill that into histogram, not trivial...

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

Idea given by Akiba san. For each combination, take into account of the distribution of the possible vertex Z range, and normalize the distribution, and fill into the histogram. (Used to assume the Uniform distribution of the vertex Z)

For each combination

Caveat: for each combination in single event, have to have the shape, and fill that into histogram, not trivial...

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

Idea given by Akiba san. For each combination, take into account of the distribution of the possible vertex Z range, and normalize the distribution, and fill into the histogram. (Used to assume the Uniform distribution of the vertex Z)

For each combination

Caveat: for each combination in single event, have to have the shape, and fill that into histogram, not trivial...

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

Idea given by Akiba san. For each combination, take into account of the distribution of the possible vertex Z range, and normalize the distribution, and fill into the histogram. (Used to assume the Uniform distribution of the vertex Z)

For each combination

Caveat: for each combination in single event, have to have the shape, and fill that into histogram, not trivial...

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

Idea given by Akiba san. For each combination, take into account of the distribution of the possible vertex Z range, and normalize the distribution, and fill into the histogram. (Used to assume the Uniform distribution of the vertex Z)

For each combination

Caveat: for each combination in single event, have to have the shape, and fill that into histogram, not trivial...

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

Idea given by Akiba san. For each combination, take into account of the distribution of the possible vertex Z range, and normalize the distribution, and fill into the histogram. (Used to assume the Uniform distribution of the vertex Z)

For each combination

Caveat: for each combination in single event, have to have the shape, and fill that into histogram, not trivial...

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

SPHE

Idea given by Akiba san. For each combination, take into account of the distribution of the possible vertex Z range, and normalize the distribution, and fill into the histogram. (Used to assume the Uniform distribution of the vertex Z)

Trapezoidal shape for each combination

- Correct the cluster ϕ based on the reconstructed average vertex XY
- Loop over the combination, and keep the combinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

- Correct the cluster ϕ based on the reconstructed average vertex XY
- Loop over the combination, and keep the combinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

- Correct the cluster ϕ based on the reconstructed average vertex XY
- Loop over the combination, and keep the combinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

- Correct the cluster ϕ based on the reconstructed average vertex XY
- Loop over the combination, and keep the combinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

- Correct the cluster ϕ based on the reconstructed average vertex XY
- Loop over the combination, and keep the combinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

Cheng-Wei Shih (NCU, Taiwan)

- Correct the cluster ϕ based on the reconstructed average vertex XY
- Loop over the combination, and keep the combinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

- Correct the cluster ϕ based on the reconstructed average vertex XY
- Loop over the combination, and keep the combinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

- Correct the cluster ϕ based on the reconstructed average vertex XY
- Loop over the combination, and keep the combinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

- Correct the cluster ϕ based on the reconstructed average vertex XY
- Loop over the combination, and keep the combinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

SPHE

Cheng-Wei Shih (NCU, Taiwan)

INTT meeting

Final vertex Z given by average of 7 gaussian fits with the fit ranges of "mean $\pm (0.2 + 0.15 \text{ x i}) \times \text{the}_50\%$ width"

MC zvtx setting: Gaussian (-20 cm, 5 cm) zvtx rage : $-30 \text{ cm} \sim 0 \text{ cm}$

The higher multiplicity the more accurate vertex Z determined 1.7 mm resolution in the region of number of clusters > 1000

Cheng-Wei Shih (NCU, Taiwan)

SPHE

The wiggling structure due to the fact that the collisions happened near the edge of INTT

Cheng-Wei Shih (NCU, Taiwan)

INTT meeting

SPHE

Data

Data

The comparison between MBD reco. vertex Z

INTT meeting

SPHE

The optimization of vertex Z determination

- New trial: after having the histograms made of possible vertex Z ranges, use ML (XGBoost) to do the final vertex Z determination
- Training variables: the content of each bin of the histogram post the 50% entry cut (2401 variables currently, corresponding to the number of bins of histogram)
- Total MC events: 80k (75% training, 25% testing)

SPHENIX

The optimization of vertex Z determination

The test sample 25% of the total MC events Number

Reco. vertex Z predicted by training model

Cheng-Wei Shih (NCU, Taiwan)

INTT meeting

Number of cluster* > 800

The optimization of vertex Z determination

The test sample 20% of the total MC events

INTT meeting

Entries

- Reco. vertex Z predicted by training model
- Reco. vertex Z by 7 Gaus fittings

Links

- The analysis code for the INTT vertex reconstruction: <u>https://github.com/sPHENIX-</u> Collaboration/analysis/tree/master/dNdEta_Run2023/analysis_INTT_CW

The link to analysis note : <u>https://www.overleaf.com/project/66c2de6290ee43c025eb17f1</u>

Cheng-Wei Shih (NCU, Taiwan)

INTT geometry

INTT: 2 sensors X 2 sides of half-ladders X 56 ladders = 224 sensors

Notation: B_xL_{yzz} x: Barrel ID (0 for inner or 1 for outer) y: Layer ID (0 for inner or 1 for outer) zz: Ladder ID (from 0 to 15)

Axis (Right-haded coordinate) x-axis: $\vec{y} \times \vec{z}$ y-axis: Vertically upward direction

INTT meeting

SPHE

