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Enjoying the last days of summer ...




What is a scar?

» Quantum Chaos: Bunimovich Stadium
e chaotic system: ball will cover every possible trajectory inside the stadium
e if ball is started at a certain angle, it will instead retrace the same path forever

e same situation for if ball is replaced by quantum particle

scarred wave function

U 2 Eric Heller 1980s

billiard is quantum ergodic but
not quantum unique ergodic
(almost all eigenfunctions
uniformly spread over the billiard

particle in a Bunimovich stadium can show scars along the trajectories
where it is likely to be found
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What is a scar?

» Quantum Chaos: Bunimovich Stadium

chaotic system: ball will cover every possible trajectory inside the stadium

if ball is started at a certain angle, it will instead retrace the same path forever

same situation for if ball is replaced by quantum particle

——> analogy with recurring alternating state of atoms: quantum-many body scars

scarred wave function

U 2 Eric Heller 1980s

billiard is quantum ergodic but
not quantum unique ergodic
(almost all eigenfunctions
uniformly spread over the billiard

particle in a Bunimovich stadium can show scars along the trajectories
where it is likely to be found



What is a quantum many-body scar?
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» 10 atoms oscillating between ground state (black) and excited state (white). Atoms
can be simultaneously in the superposition of all possible 47 configurations.

» Top plot shows different probabilities of individual configurations over time.



Quantum Dynamics/Ergodicity

——> many-body physics beyond the ground states

» advances in experiments: isolated quantum systems

» fundamental questions: When and how is quantum information lost/retained?

——> ergocity

¢ jisolated system: quantum quench |\Ij> —> U(t) —> ‘???>



Motivation: Progress in Experiments

ultracold atomic systems (ultracold) Rydberg atoms

fermionic atoms in optical lattice: dynamics depend on
(non)-interacting atoms

[Bloch group (MPQ, Munich)]

alkali-metal atoms (lithium, sodium, potassium, rubidium,
cesium, and francium)

[Harvard group]

e systems are isolated from environment » experimental realization of topological
matter

e non-equilibrium physics

e quantum dynamics: prepare precise initial states
and observe the ensuing dynamics in real time



Ergodicity in Quantum Dynamics

¢ j[solated system: quantum quench

)y — U®) — [777)

> ergodic dynamics: system relaxes to locally
thermal state regardless of initial condition

» mechanism: system acts as its own bath

» many-body time evolution washes away
quantum correlations

» quantum information stored in local objects is
rapidly lost as these get entangled with the rest _ — _ _ _
spin system: spins will get entangled with other spins as time
of the systems. progresses

» many-body system is essentially devoid of any remaining
structure



Ergodicity in Eigenstates

Eigenstate Thermalization Hypothesis (ETH)
Deutsch 1991, Srednicki 1994

e interested in generic high energy eigenstates | E) H|E) = E|E)
(finite energy density above ground state)
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Ergodicity in Eigenstates

Eigenstate Thermalization Hypothesis (ETH)
Deutsch 1991, Srednicki 1994

e interested in generic high energy eigenstates | ) HI|E) = E|E) Y
(finite energy density above ground state) e —
Ao %)=
® ETH: eigenstates of thermalizing systems appear 2N I
thermal to all local measurements ]
A~ Wy
gs N T

1 _
pa = trp| E)E| — ——e BH4
A

Sa =trjpaln pa| = S(E)Lj o Sther ~ VOl(A
thermal entropy is extensive at finite temperature

(Oa)E =Tr(pa0a) = (Oa)E

e ground state(s) are special: S 4 ~ Lj_l area law

——> Are there non-ergotic quantum systems?




Ergodicity in Eigenstates

e Eigenstate Thermalization Hypothesis (ETH) Deutsch 1991, Srednicki 1994

¢ entanglement behavior of generic highly excited many-body states

6 _ 0S54 —0 mid spectrum states:
AT 9F — 7 “infinite temperature”

SA

ETH systems: volume-law
(ergodic)

area law

» ETH systems: every eigenstate thermalizes, all finite
energy density eigenstates exhibit volume-law



Ergodicity in Eigenstates

e Eigenstate Thermalization Hypothesis (ETH) Deutsch 1991, Srednicki 1994

¢ entanglement behavior of generic highly excited many-body states

SA

ETH systems: volume-law
(ergodic)

systems with Many-body
localization: area-law (non-ergodic)

E

P.W. Anderson, Phys. Rev. 109, 1492 (1958)
Gornyi, Mirlin, Polyakov, PRL 95, 206603 (2005)
Pal and Huse, PRB 82, 174411 (2010)

Serbyn, Papic, Abanin, PRL 111, 12701 (2013)
Huse, Nandkishore, Oganesyan, PRB 90, 174202

» ETH systems: every eigenstate thermalizes, all finite
energy density eigenstates exhibit volume-law

(2014)
» Many-body localization (MBL) systems: all eigenstates L
have area-law entanglement Many-Body Localization
phase:
» Dynamics in MBL systems: all states retain memory of strong ergodicity breaking

initial state (nonergodicity)



Ergodicity in Eigenstates

e Eigenstate Thermalization Hypothesis (ETH) Deutsch 1991, Srednicki 1994

¢ entanglement behavior of generic highly excited many-body states

6 - 0S4 —0 mid spectrum states:
A= — - “infinite temperature”
S OF

follow ETH predictions
(ergodic)

few rebel states with
low entanglement
(non-ergodic)

....... —
.SAare: Ia[\;vA E C.J. Turner et al., Nature 14, 745-749 (2018)

systems with quantum many-body scars: almost every

eigenstate thermalizes . 1

lim (—

X Nnon— ermal ) — 0
L 0o dim(H) thermal)

Dynamics: almost all states do NOT retain memory of
initial state (ergodicity)

systems with quantum many-body scars: a few eigenstates quantum many-body
(scar states) exhibit sub-volume entanglement scars:
Dynamics: scar states DO retain memory of initial state weak ergodicity breaking

(nonergodicity)



Quantum many-body Scars <—-Quantum Information

» motivation in applications/advances in quantum information

e Quantum Memory: persistent long-lived oscillations relevant for quantum information storage,
interest for applications in quantum memory and quantum error correction

e Entanglement Properties: unique entanglement structures can be leveraged to study entanglement
dynamics and correlations, critical for quantum information processing, understanding how
entanglement evolves (entanglement dynamics) provides insights into non-equilibrium
dynamics valuable for developing quantum algorithms/protocols

® Quantum Computing and Algorithms: efficient state preparation in quantum computing,
robustness against decoherence

e [nformation Scrambling: study of QMBS can contribute to understanding how information is
scrambled in quantum systems, relevant for quantum communication and information security

e Exp. Realization in Cold Atoms: providing platforms for exploring quantum information concepts
in controlled environments, serve as testbeds for developing quantum information technologies



Experimental Realization

» scars in a quantum generic system

e 51 (Rydberg) Rb atoms placed in a row: every other atom in either a high-energy
excited state or a low-energy ground state

e atoms reach equilibrium, then quickly revert to the original "antiferromagnet” state

Rydberg experiment:

ORDERED SEQUENCE OF ATOMS




Experimental Realization

Many-body physics with Rydberg atoms

1013 nm V. 420 nm

Bernien et al., Nature 551, 579 (2017)

o individual > Rb atoms are trapped using optical tweezers (vertical red beams) and
arranged into defect-free arrays

o coherent interactions Vi; between the atoms (arrows) are enabled by exciting them
(horizontal blue and red beams) to a Rydberg state, with strength ()

e strong van-der-Waals interaction between excited (spin-up) particles

o tune atomic spacing so that |g) '17.:}’%“;._9} = l.:'f":f;i._



Experimental Realization

Many-body physics with Rydberg atoms

1 Oad Al ¥ WrNY Fe4 e ¥ 42 SRAE 49 4 s 3 > ¥ s & debiry ‘e rENIIny
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..............

2. Arrangelj{iii5%  priiaes
3. Evolve | U(t) U(t) U (t) U (1) U ()
4. Detect ,

» experimental protocol

1. atoms are loaded into a tweezer array
2. atoms are re-arranged into a preprogrammed configuration

3. the system evolves under U(t) with tunable parameters, this evolution can be implemented in
parallel on several non-interacting sub-systems

4. detect the final state using fluorescence imaging, atoms in state |g> remain trapped, whereas
atoms in state |r) are ejected from the trap and detected as the absence of fluorescence (indicated

with red circles)



Model for Rydberg Experiment

Many-body physics with Rydberg atoms

——> effective model for 1d chain of Rydberg atoms: spin-1/2 model

L
H = Z P X1 1P;4o X;, Y;, Z; are Paulioperators

strongly correlated i—1

paramagnet local basis states at site i: !0> = \ T> \O> = | ¢>

> X, =|o)(e| + |®)(o| creates or removes an excitation at site i

> P, =|o)(o|=(1—-Z;)/2 projectors ensure that the nearby atoms are not
simultaneously in the excited state

C.J. Turner et al., Nature 14, 745-749 (2018)

P X5 P3| 000
Py X2 P3
Py X5 P3
P XoP3 @0
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Model for Rydberg Experiment

Many-body physics with Rydberg atoms

——> effective model for 1d chain of Rydberg atoms: spin-1/2 model

L
H = Z P X1 1P;4o X;, Y;, Z; are Paulioperators

—
z local basis states at sitei: |®) = |T) [o) =)

> X, =|o)(e|+ |®)(o| creates or removes an excitation at site |

> P, =|o)(o|=(1—-Z;)/2 projectors ensure that the nearby atoms are not
simultaneously in the excited state

This model: C.J. Turner et al., Nature 14, 745-749 (2018)
P1X2P3 O OO> = | O QO>

——> able to describe unexpected revivals in certain states
P1X2P3 OOO> :O P

Z2) = |@ceceo...)

P XyP3|0ce) =0 L . .

——> identifies special states responsible:
P X5P;| ece) =0 quantum many-body scar states




Model for Rydberg Experiment

Many-body physics with Rydberg atoms

9
S
55
DO_ ﬂ
1 ; . ; . : \
0 0.5 1 1.5 2 2.5 3 3.5
Pulse duration (us) 1f £ £ 00—5—’——1'
0 5H H H_ _ Rydberg brobability
Al mHmHm I, HHHHHHHHH HHHHHHHHH

e strong coherent revivals after quench from Neel state Zo) =|@ceceo0...)



Model for Rydberg Experiment

Many-body physics with Rydberg atoms

e start with antiferromagnetic initial state and evolve it for some time t: |Zy) = |ececeo...)

local basis states at sitei: |¢) =|1)

%0.6-- A o . o) =11)
O

é 1 ) OOO 8888 00088
O ©] Q o, 8 8 Bo© . .
E 0.4 Sog oo —> observe oscillations around a
c 18 non-thermal value
a O 2__0 © 9 atoms
E° © 51 atoms
] 1 MPS

O 02 os = 1% C.J. Turner et al., Nature 14, 745-749 (2018)

Time after quench (us)

e strong coherent revivals after quench from Neel state |Z3) = |ececeo...)

e no revivals for generic initial product states, they thermalize quickly

example: |Zg) =|ocoooo0o...)

——> Highly unexpected! Model does not seem to satisfy ETH!!!

——> strong dependence on initial state: ET MBL



Model for Rydberg Experiment

Many-body physics with Rydberg atoms

——> effective model for 1d chain of Rydberg atoms: spin-1/2 model

0 1% FsA

L
H = Z P X1 Py

existence of
(L+1)-states with

1=1 atypically high
overlap of
> XZ:’0><Q‘—|—’0><O‘ |Z2>:\oooooo...>

state with each
state of the
spectrum of H

> P =o)(o| = (1 - Z,)/2
Z; = |o)(s] [0} (o]

P1 X3 Ps| 000) = |0 e0) subvolume law
. entanglement S

P1XoP3] @00) =0 for (L+1)-scars

P1X2P3 ©) O.> — O

P1X2P3 ° O.> =0 ’ —;0 _10 10 20

SIE



Quantum Many-Body Scar States

Are there models (classes or families) that contain scar states that
do not thermalize?
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Quantum Many-Body Scar States

Are there models (classes or families) that contain scar states that
do not thermalize?

Characteristics of systems with scars?

General mechanism?



General mechanism

1. Unconventional Symmetries or Conservation Laws:

» Hidden Symmetries: QMBS states often arise from hidden symmetries/conserved quantities not immediately
apparent in the Hamiltonian. These symmetries can protect certain eigenstates from thermalizing and contribute
to the scars’ formation.

» Strongly Broken Symmetries: Some systems with QMBS have Hamiltonians that break certain symmetries,
leading to a small subset of states that exhibit non-ergodic behavior.

2. Group-Theoretic Constructions:

» Group-Theoretic Methods: QMBS states can be constructed using group-theoretic methods, where special
algebraic structures or symmetry groups lead to a discrete set of scar states. These constructions often reveal
how such states can be embedded within the Hilbert space of a many-body system.

3. Entanglement Structure:

» Special Entanglement Patterns: QMBS states often exhibit unique entanglement properties, such as specific
patterns of entanglement that prevent them from mixing with other states. These entanglement patterns can
lead to slow dynamics and long-lived oscillations in observables.

4. Perturbative Analysis

» Perturbative Methods: In some cases, QMBS can be understood as perturbations or excitations around
exactly solvable points or models. These perturbative approaches help in identifying the conditions under which
scar states persist.

5. Construction from Specific Models, Exact Solutions, Numerical and
Experimental Observations



General Construction: Bilayer System

copy 1: H; /' i ,’4;@, dim(H;) = d¥
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General Construction: Bilayer System
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General Construction: Bilayer System

copy 1: H;y /

copy 2: Ho / =
o

T

sites 7

e H="H1+ H> —

_Hl

mirror symmetry M : i — i

)

ZEn\\IJ
ZEnyqf

H ‘\Ijnm> —
{‘\pnm> —

with special case: H|V,,,,) = 0
{’\Ijnn> —

Phn) &

V) ®

° /
@ ~
sites 7

Yn) V1

dim(Hs)

(En R Em)mjnm>
V) VYV n,m=1,..

—1,..

dim(?—[l) — dN

= aV

AV

AV}



General Construction: Bilayer System

dim(?—[l) — dN

sites 7

copy 2: 7‘[2 : - ‘ .
/‘ G / dim(#>) = dV
sites 1

H=H1+ Ho +H1> Ho = —H,
mirror symmetry M : 5 — i

copy 1: H1 A’ - ' /

Wildeboer et al., PRB 106, 205142 (2022)

* We demand in addition: H15|V,,,,) = F12|V,,,) Langlett et al., PRB 105, L060301 (2021)

W) = |Yn) @ |n) :Vn=1,... dN} are quantum many-body scar states !

——> Einstein-Podolsky-Rosen (EPR) scar states are born!



EPR Scar States

——> examples:
» quantum dimer model as bilayer system on square lattice, ...
» Bose-Hubbard model as bilayer system

> bilayer triangular lattice Heisenberg model with SU(2) symmetry

... and more see Wildeboer et al., PRB 106, 205142 (2022) and future work



Quantum dimer models

quantum fluctuations

.| EEEEE
. 55000 0
? i W :|:1:|:|:l:|:

frustrated spin systems !—I—!——!—I-
valence bond solid order is melted by quantum giving rise to a quantum
fluctuations disordered state

dimers: microscopic representations of spin singlets (valence bonds) assumed to be the
building blocks of low energy subspace of an underlying quantum spin-1/2 problem
with strong frustration

1
— M = ﬁ“ T\L> — ‘ ¢T>) spin singlets = valence bonds

Rokhsar, Kivelson, PRL 61, 2376 (1988)
Moessner, Sondhi, PRL 86, 1881 (2001)

replaced by dimer
(rod-like object) Misguich et al., PRL 89, 137202 (2002)

Wildeboer et. al, PRL 109, 147208 (2012)

Wildeboer et. al, PRB 95, 100402 (2017)
Wildeboer et. al, PRB 102, 020401 (2020)



Dimers on the square lattice
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Dimers on the square lattice
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Dimers on the square lattice
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Quantum dimer model with interlayer coupling

e guantum dimer model on the square lattice

H:Z—tTD-FUVD

Z (1D + 12D I +o (0D @+ 120 () RETE X X

e work at Rokhsar-Kivelson (RK) point: { = ¢ a =1,y

» spectrum is positive-semidefinite: H|V) =FE,|¥) E, >0

> ground state: |U) =) |D)
SaA ~ sub-volume

——> quantum dimer model on square lattice with ground states in critical U(1) spin liquid phase

Ly(y)

: . : L,
——> ground state degeneracy depends on lattice dimensions (Lx,Ly: —% < Wagy) <+ 5

NS = (Ly+1)-(L,+1)

SecC



Quantum dimer model with interlayer coupling

e quantum dimer model on the square lattice / ° o o./
i

H = Z tT[]-F’UV[]

—Z (0D (S + 1D I +u (0D 1+ 120 (D) e A N

square lattice bilayer

—— H=H1QI+ITIQHs+ Hio

Hi=) —t(ID I+ +o DI+ (3D

[

Hio :% <Z|H7H><H7H|+Z|17 I><Ia I|>
D Iy Ly

A
= — Ny Xn
N 5o



Quantum dimer model with interlayer coupling

e guantum dimer model on the square lattice
H = Z tT[:] + v VD

—Z D+ AM+o D+ D

square lattice bilayer

—— H=H1QI+ITIQHs+ Hio

Hi=) —t(ID I+ +o DI+ (3D

[

A
7'[12 :ﬁ <Z|H7H><H7H|+Z|I7 I><17 I|>
D eh ev

A
= — Ny Xn
N 5o

Einstein-Podolsky-Rosen (EPR) scar states

|EPR‘ Z Z |D w’wy> ® ’D >wy>

(We,Wy) Duwywy,

= Y  |RK)® RK)

perfectly correlated: dimer
configurations identical in both
layers



Quantum dimer model with interlayer coupling

all states
0.6 B scars with ,Z\ E,,}EPR:I’ 2=1
(W, W,)=(1,0) (W,,W,)=(0,1)

~ 0.5 o &
= I :
oW [ I
~ 0.4 | |
\L'i: layer ! !
e I |
a.0.3 | |
O [ |
| - | |
0'>) I |
I |
I |
0.1 | |
| |
| I
| |

O-O . - i d l - ' ‘| 1 1

-6 -4 -2 0 2 4 6 8

energy £
in general tower of
Einstein-Podolsky-Rosen (EPR) scar states
NS =(@L,+1) (L,+1) scar states
EPR)= > > |Duw,w,)®|Duw,uw,)
(wmaw'y) wa,wy
= ) [RK)®|RK) tower of 2 critical U(1)
Wizt scar states

= Z [EPR) (. )

(W, wy)



Quantum dimer model with interlayer coupling

6 all states
®  scars with )_|(E,|[EPR)[2=1
5t}
4|
.
N3
»| bipartition G) @
ype W,, W
- W, . | 1.0 : 0,1
1 :. . ?‘n 2 o/
0
-6 -4 =2 0 2 4 6 8
energy £
in general tower of
Einstein-Podolsky-Rosen (EPR) scar states
NS =(@L,+1) (L,+1) scar states
EPR)= > > |Duw,w,)®|Duw,uw,)
(wz,wy) wa,wy
= Y |RK)®|RK) tower of 2 critical U(1) scar states
(wa,wy) with simple entanglement
=y [EPR) | structure

(W, wy)



Quantum dimer model with interlayer coupling

all states
3.5 B scars with Z E,.|[EPR)|* =1 @
W,, W 1,0 W,,W,)=(0,1

3.0} bipartition type

2 5 o ~—o—-_o_-
s note that entanglement
S 20 depends on choice of
vy bipartition

1.0

0.5

0.0

-6 -4 -2 0 2 4 6 8
energy FE
in general tower of
Einstein-Podolsky-Rosen (EPR) scar states
NS =(@L,+1) (L,+1) scar states
EPR)= > > |Duw,w,)®|Duw,uw,)
(wz,wy) wa’wy
= Y |RK)®|RK) tower of 2 critical U(1) scar states
(wa,wy) with simple entanglement
— Z [EPR) ) structure

(W, wy)



Quantum dimer model with interlayer coupling

(b)

(c)
all states 6
- 3 \
ocll ¥ == with > J(E,[EPR)[* = 1 35| ® scars with D (£, |[EPR)? 1b o ®  scars with _J(E,|[EPR 1
! ! I | W, W 1,0 w.. " 5
. 0.5 . o 3.0} pipartition type
o 2.5 a
=04 s S B
layer > -
— s 2.0 g -
2 0.3 N2 )
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1-0 typ . - i 11
i - - - > - $ f/
0.1 0 5 1 . -
' £
0.0 0.0 0
-6 -4 -2 0 2 a4 -6 -4 -2 0 2 4 -6 -4 =2 0 2
energy E energy F energy E

note that entanglement
depends on choice of
bipartition

in general tower of
Einstein-Podolsky-Rosen (EPR) scar states

EPR)= > > [Duw,)®|Duw,)

(’U}z 7wy) D"Uz Wy

= Y |RK)®|RK)

(W, wy)

= Z |EPR> (ww’wy)

(W, wy)

NS =(@L,+1) (L,+1) scar states

tower of 2 critical U(1) scar states
with simple entanglement
structure



Bose-Hubbard model with interlayer coupling

e Bose-Hubbard model =) —t; (b;'rbj + h-C-) +U Y ni(n;—1)
(4,9) i
bosonic occupation operators 7; = 0,1,2,3,...

[H, TLZ] =0



Bose-Hubbard model with interlayer coupling

e Bose-Hubbard model H = Z —14; (b;rbj + h.c.> + Uzni (ni — 1)
(4,9) i
bosonic occupation operators 7; = 0,1,2,3,...

[H, nz] =0

Ll
P

o 2 : 2 square lattice bilayer
7‘[12 = A (nz — n;)

— W= 1, (bjbj n h.c.) +UN i (ng — 1)
(i.3) i




Bose-Hubbard model with interlayer coupling

e Bose-Hubbard model H =) —t; (bTb + h. C) + Uznz — 1)

(,7)

bosonic occupation operators 7; = 0,1,2,3,...

[H, TLZ] =0

—> Hqi = Z —1;j (b;rbj -+ hC) + Uan (nz _

(4,7)

ng—AZ

e Einstein-Podolsky-Rosen (EPR) scar states

Mmax

[EPR) = )  cm|EPR)um

M =0
sector M bosons

[EPR)y = Py

square lattice bilayer

“bosonic configurations
identical in both layers”



Bose-Hubbard model with interlayer coupling

o o
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0.0t

MmaX:3

M=3

0<M<3

scar with M =0 ||

scar with M =1

scar with M =2 ||

scar with M =3

EPR)= > cu|EPR)um

M=0

energy E

30

tower of 4 scar states

tij € [0.9,1.1]
U=1.0
A= 1.0



Bose-Hubbard model with interlayer coupling

41
3 i
Z
>
2
@ bipartition M=1
1| ® " wes |
Iayer X7 scar with M =0
@ I - B scar with M =1
I 1 [ /. . / B scar with M =2
B scar with M =3
O i ] l l l | ]
—10 0 10 20 30 40
energy £
MmaX:3

EPR)= » cu|EPR)u
M=0

tij € [0.9,1.1]
U=1.0
A= 1.0

scar states with simple
entanglement structure
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Bose-Hubbard model with interlayer coupling

Hl — Z —Ifij (bjb} —+ hC>
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Bilayer triangular lattice Heisenberg model
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Summary

Quantum many-body scar states

e background on quantum many-body scars

» billiard Bunimovich stadium, Rydberg experiment at Harvard

» PXP model and its experimental realization
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¢ 2D bilayer systems of various degrees of freedom:
2D bilayer system
spins, bosons, fermions, quantum dimers, ...

Wildeboer et al., PRB 106 (2022)

o future
» mechanism for scar existence?
» How far are the applications for quantum many-body scars (quantum information)?

» quantum many-body scars in an actual compound <—> theory & experiment collaboration in the
CMPMSD at BNL
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