
A Practical Understanding of Git
Common commands and when to use them

Joseph Bertaux

Purdue University

November 18, 2024

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 1 / 43



Contents

1 Overview

2 Commands
Getting started
Reviewing history, previewing changes
Committing changes
Merging changes

3 Workflow

4 References

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 2 / 43



Contents

1 Overview

2 Commands
Getting started
Reviewing history, previewing changes
Committing changes
Merging changes

3 Workflow

4 References

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 3 / 43



What is Git?

Figure: Git logo. [1]

Git is a command-line tool for version control

It saves a project at various stages using
commits and branches

It can be used to push changes to remote
repositories

And naturally pull (or rather fetch, merge
from other repositories)

Also, generate diff files with differences
between different files or different versions of
the same file

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 4 / 43



What Git is not

Git is not a specific host for .git style repositories

Namely, Git itself is not one of:

Github [2] Sourceforge [3] Sourceforge [4]

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 5 / 43



Some History

In 2005, Linus Torvalds created Git over the span of approximately 5
days

The same Linus Torvalds that created the Linux kernel

Linus did this to create a replacement for BitKeeper

This was motivated by a licensing dispute
BitKeeper was a popular version control software before Git [6]

The sPHENIX Wiki also provides external links, specifically [5]

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 6 / 43



What to expect from this presentation

This presentation aims to leave you with an idea of what sequence of
commands to use in a basic Git workflow

For all Git commands, please know that you can do

git help <command>

To bring up the manual page for that command

This allows you to see additional options, which could be useful
It gives a proper description of what the command does

This talk will not discuss advanced Git techniques,

nor will it discuss Git internals

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 7 / 43



Contents

1 Overview

2 Commands
Getting started
Reviewing history, previewing changes
Committing changes
Merging changes

3 Workflow

4 References

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 8 / 43



Getting Started

You should configure your Git identity before beginning to work with
repositories

Once you have a fork or subdirectory ready to work in, you’ll want to
configure that subdirectory

If you’ve forked a repository, you’ll want to configure your remote
upstream to point there

Commands may find yourself using are

git config

git clone

git init

git remote

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 9 / 43



Getting Started
Configuring Git

You should configure your Git identity before beginning to work with
repositories
On a filesystem where you have your own user account, you can run

git config --global user.name <your username>

git config --global user.email <your email>

to update the copy of .gitconfig in your home directory

If instead you’re using a user account which is shared with others,
then for the local repositories you are maintaining,

git config --local user.name <your username>

git config --local user.email <your email>

To update the local .git/config file at the top level of that repository
Note that --local can be omitted–this is the default behavior of git
config

(This is the case if you want to use Git on opc0)

This ensures your commits are credited to you
For better or worse–but we won’t discuss git blame here

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 10 / 43



You may also want to change the editor Git will use by default for
interactive commands

git config --global core.editor <your editor>

The default is nano, but you may wish to change it to vim or emacs,
for example
You may need to omit --global and do this on a per-repository basis
for filesystems where you’re sharing a user account with other people

This is useful for git commit

You can run git commit without specifying -m to launch your editor
to create the commit message
You will also see which files will be modified by the commit as
commented lines

and git rebase -i

You edit a series of files here
first selecting which commits to pick and squash

then revising the messages of pick’d commits

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 11 / 43



Getting Started
Initializing a Repository

When beginning work with Git, you need to either obtain an existing
repository or create a new one

The ways to do this are with
git clone <url>

To copy a remote repository here and set the remote origin to url

Note that this creates a subdirectory for the repository

git init

To initialize a local repository with Git
This won’t affect existing files, and you can do this with non-empty
directories

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 12 / 43



Getting Started
Configuring a Repository

You can run the aforementioned git config commands withouth
specifying --global to apply them only for this repository

If you a working with a fork of a repository, you should also run

git remote add upstream <upstream url>

This should be the url of the repository you forked (not the url of your
fork)

You should run git remote -v to check the remote references are as
they should be

origin is the url of your fork
upstream is the url of the original repository you forked from

If you started with git clone, your remote origin should be
configured by default

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 13 / 43



Reviewing history, previewing changes

One of the more frequent things to do is preview your changes from
the command line

This helps you avoid too frequent, premature commits by checking the
changes you made will be incorporated the way you intend
But performing git rebase is the most powerful to keep a clean
history–more on this later

Though some remote .git repositories offer ways to view changes,

This requires committing your working tree and pushing the changes to
a remote host
And running a separate application to view the remote changes after
they’ve been pushed (e.g., your browser)

Commands you may find yourself using often are

git status

git ls-files

git log

git diff

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 14 / 43



Reviewing history, previewing changes
git status, git ls-files

git status shows

what tracked files
have been modified
which files are not
tracked (and must be
git add’d before
changes can be git
commit’d

Figure: Example output of git status where
foo.c has been git add’d, but not yet git
commit’d, and bar has not even been git add’d

git ls-files shows

A list of which files are being tracked by Git

Notice that these can be given a path, if you want to see the output
for a specific subdirectory or even only check one file

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 15 / 43



Reviewing history, previewing changes
git diff, git log

git diff <options> <commit> <paths...> shows

The difference between the state of <paths...> as they are on disk
and as they are as of <commit>
By default, <commit> is the HEAD of the current working tree
So running git diff <paths...> shows any “unsaved” changes
made to <paths...> since the last time you ran git commit <...>

or git add ...

But sometimes you want to see the changes you’ve over the past
several commits, and not just unsaved changes

For this we can use git log to see how many commits back we want
to check, or which commit we want to check against

git log <paths...> shows

The Git commit history of <paths...>, with commit messages, dates,
and authors

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 16 / 43



Reviewing history, previewing changes
More on git diff

git diff, while knowing what commits we want to compare, is a
useful tool

A particularly useful syntax is git diff HEAD∼<#> <paths...>,
where <#> is the number of previous commits to compare the working
tree with

For example, compare the working tree to what our code was 3
commits ago:
git diff HEAD∼3

Or, use git log and obtain the hash of a particular commit for
comparison

It can also be used to compare any files

git diff --no-index <file1> <file2>

This is the default behavior of git diff if neither file is being tracked
by Git

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 17 / 43



Reviewing history, previewing changes
More on git diff

Try --compact-summary if working with many files

Typical git diff output Output with --compact-summary

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 18 / 43



Committing changes
Useful practices

Before starting new work, you’ll want to synchronize your local
repositories with the upstream repository

You only need to synchronize the Git histories (git fetch)
But you can also apply the latest changes if you want to check the
state of the code (git merge, git pull)

When making changes, it’s good create branches for each feature
This allows you to work on multiple features at a time while
maintaining only one fork
It allows independent changes to be tracked and merged (or discarded)
independently

Commands you may find yourself using often are

git checkout

git fetch, git merge, git
pull

git push

git add, git commit

git rm, git restore

git rebase

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 19 / 43



Committing changes
Checking out a new branch

To check out a new branch, you can run either
git checkout -b <branch name>

git branch <branch name>

These give you a new branch that is synchronized with your local
master branch

It may be instead called main

This is the default name for more recent Git repositories

You’ll then want to obtain remote changes and apply them to your
working branch,

git fetch upstream/master; git merge upstream/master, or
git pull upstream/master

Note that it may be upstream/main instead

git fetch synchronizes the Git history

git pull and git merge synchronize the history and state of
tracked files

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 20 / 43



Committing changes
Making changes

At this point

(you are on your working branch and have synchronized it with the
remote)

You can edit files locally into the state they should be

Making changes using your preferred workflow and text editor
Add additional files or entire subdirectories using git add <path...>

Removing files that have become superfluous using git rm

<path...> (this removes them on disk also)

You can do this over multiple sessions

But you will need to commit you changes before switching branches
Creating superfluous commits is fine with rebase, so this is the way I’d
advise
You can also stash your changes and then apply them later
But this makes them easy to loose and there is only one stash at any
time

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 21 / 43



Committing changes
Committing changes

Commit all changes git commit -a -m <commit message>
You can also run git commit -a and then edit the message
interactively

You will use your Git editor for this as described earlier, which is why it
is important to set it

Figure: Example of an interactive commit. Notice the information about what will
be committed in the commented lines. Note that my Git editor has been changed
to vim.

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 22 / 43



Committing changes
Rebasing changes

Once you’ve committed changes, you can OPTIONALLY rebase
your commit messages

You can run git log to check which commit you should rebase from
This will usually be the commit when you merge’d the latest state of
upstream you one of your local branches

Once you’ve identified the commit, you can run
git rebase -i <commit>, or
git rebase -i HEAD∼<#>

This will launch an interactive (-i) rebasing session where you can
squash superfluous commits

You will use your Git editor for this as described earlier, which is why it
is important to set it

ONLY REBASE YOUR OWN COMMITS
Intermediate commits are lost
Don’t push changes if you have modify the git history of others’ work

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 23 / 43



Committing changes
Rebasing changes

What you will see will depend on your editor and commit history

Note that newer commits are listed lower in the file

(Opposite to git log, where newer commits are shown toward the
top)

Figure: Selecting which commits to
pick and squash, saving and closing
this file in your editor takes you to
the next step

Figure: Editing the messages of the commits
you picked in the previous step, saving and
closing this file in your editor finishes the
rebase

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 24 / 43



Committing changes
Merging changes

You should verify the changes you’ve made can be merged

(The upstream branch may have changed while you were editing your
feature branch)

A way to do this is

Checkout your local master branch (git checkout master)
Merge your local feature branch (git merge <feature branch>)
Merge the upstream master branch (git merge upstream/master)

Note that

This is not the only way to achieve this
The merges can be performed in either order
The master branch may not be called master, but something else
(e.g., main)

You might encounter merge conflicts when trying to git merge or
git pull branches involving incompatible changes to the same file

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 25 / 43



Committing changes
Resolving merge conflics

These occur when multiple branches are merge’d, but
Branches specify different changes to the same file(s)
Git cannot resolve how to change the file (the selected diff algorithm
failed)

You can check the status of a merge by running git status

Figure: Output of git status when a merge conflict exists. Note that is says
both modified for conflicting files, and give instructions on how to proceed

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 26 / 43



Committing changes
Resolving merge conflics

Conflicting sections of conflicting files are modified with sections like

<<<<<<< HEAD
Sec t i o n o f code as i t e x i s t s i n the branch you a r e merg ing i n t o
(The t a r g e t branch tha t w i l l be changed by the merge )
=======
Sec t i o n o f code as i t e x i s t s i n the branch you a r e merg ing i n t o
(The sou r c e branch tha t w i l l be unchanged by the merge )
>>>>>>> <name o f s ou r c e branch>

You can traverse files by searching for the literals <<<<<<<, =======,
or >>>>>>> which Git inserts into the file

The simplest way to resolve the merge is to keep the sections from
one branch

But you will need to incorporate features added by other contributors
with the features you are trying to add

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 27 / 43



Committing changes
Pushing changes

Once you’re satisfied with your changes, you can run

git push

To push your the commits of your local feature branch to your origin

If you have not done this for the first time with this branch, you may
need to run

git push --set-upstream origin <feature>

This will create a new branch at your origin to receive changes from
your local feature branch

If you have done this already, you may need to run

git push -f

git push --force

This will force push the commits you’ve made
And will be necessary if you’ve rebase’d your changes since your last
push

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 28 / 43



Contents

1 Overview

2 Commands
Getting started
Reviewing history, previewing changes
Committing changes
Merging changes

3 Workflow

4 References

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 29 / 43



Worflow
Starting out

upstream master

origin master

origin feature

local master

local feature

Figure: There is a remote upstream (“upstream master”) repository that you
want to track
Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 30 / 43



Worflow
Forking

upstream master

origin master

origin feature

local master

local feature

Figure: You fork this respository (e.g., on your Github), so there is a remote

origin (“origin master”) to track
Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 31 / 43



Worflow
Forking

upstream master

origin master

origin feature

local master

local feature

Figure: You clone your fork of the repository with git clone <url>

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 32 / 43



Worflow
Forking

upstream master

origin master

origin feature

local master

local feature

Figure: You make a branch to implement a feature with git checkout -b or
git branch
Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 33 / 43



Worflow
Editing and committing

upstream master

origin master

origin feature

local master

local feature

Figure: You make edits to the working tree and commit them as you go

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 34 / 43



Worflow
Rebasing

upstream master

origin master

origin feature

local master

local feature

Figure: You (optionally) rebase your commits into a single commit

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 35 / 43



Worflow
Fetching from upstream

upstream master

origin master

origin feature

local master

local feature

Figure: You checkout your local master branch to fetch upstream changes

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 36 / 43



Worflow
Fetching from upstream

upstream master

origin master

origin feature

local master

local feature

Figure: You (fetch and fetch) or pull from your upstream master into your
local master
Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 37 / 43



Worflow
Merging feature changes

upstream master

origin master

origin feature

local master

local feature

Figure: You merge your feature branch to your local master

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 38 / 43



Worflow
Pushing feature changes

upstream master

origin master

origin feature

local master

local feature

Figure: You push your feature branch to your origin as a feature branch

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 39 / 43



Worflow
Creating a pull request

upstream master

origin master

origin feature

local master

local feature

Figure: You create a pull request on your feature branch to the upstream branch

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 40 / 43



Contents

1 Overview

2 Commands
Getting started
Reviewing history, previewing changes
Committing changes
Merging changes

3 Workflow

4 References

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 41 / 43



References I

[1] https://commons.wikimedia.org/wiki/File:Git-logo.svg.

[2] https://en.m.wikipedia.org/wiki/GitHub#/media/File%

3AGitHub_Invertocat_Logo.svg.

[3] https://en.m.wikipedia.org/wiki/File:

SourceForge_logo_transparent.svg.

[4] https://en.m.wikipedia.org/wiki/File:GitLab_logo.svg.

[5] Chris Belyea.
A git workflow using rebase.
https://medium.com/singlestone/

a-git-workflow-using-rebase-1b1210de83e5, April 2018.

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 42 / 43

https://commons.wikimedia.org/wiki/File:Git-logo.svg
https://en.m.wikipedia.org/wiki/GitHub#/media/File%3AGitHub_Invertocat_Logo.svg
https://en.m.wikipedia.org/wiki/GitHub#/media/File%3AGitHub_Invertocat_Logo.svg
https://en.m.wikipedia.org/wiki/File:SourceForge_logo_transparent.svg
https://en.m.wikipedia.org/wiki/File:SourceForge_logo_transparent.svg
https://en.m.wikipedia.org/wiki/File:GitLab_logo.svg
https://medium.com/singlestone/a-git-workflow-using-rebase-1b1210de83e5
https://medium.com/singlestone/a-git-workflow-using-rebase-1b1210de83e5


References II

[6] Kenneth DuMez.
Understanding git: The history and internals.
https://graphite.dev/blog/understanding-git, November
2023.

Joseph Bertaux (Purdue University) A Practical Understanding of Git November 18, 2024 43 / 43

https://graphite.dev/blog/understanding-git

	Overview
	Commands
	Getting started
	Reviewing history, previewing changes
	Committing changes
	Merging changes

	Workflow
	References

