

RIKEN/RBRC Itaru Nakagawa

sPHENIX Detector

What's new about sPHENIX

sPHENIX Detector

1.4T Solenoid from BaBar

- Hermetic coverage:
 |η|<1.1, 2π in φ
- Large-acceptance EM+H calorimeters: brings first full jet reconstruction & b-jet tagging at RHIC!!
- High data rates: 15 kHz for all subdetectors
- Precise tracking with tracking system in stream readout

Calorimeter system

Modern Experimental Detector Layout

Tracking System

sPHENIX Tracking Detectors

MVTX (2.3 < r < 3.9 cm): precision vertexing

- 3 layers of Monolithic Active Pixel Sensors (MAPS) closely based on ALICE's ITS2
- 5 μ m position resolution for tracks with p_T >1 GeV

INTT (7 < r < 12 cm): pileup separation

- 2 layers of silicon strips (78 μm pitch)
- single-beam-crossing timing resolution

TPC (30 < r < 78 cm): momentum measurement

• Very compact GEM-based TPC: 48 layers with gateless and continuous readout.

TPC Outer Tracker (TPOT): calibration of beam- induced space charge distortions

8 modules of Micromegas inserted between TPC and EMCal

9

Tracking Points and Timing

SPHENIX

Silicon Sensors

equation

- Doped silicon is our typical semiconductor
- A charged particle passing though a material releases energy and is measured by the Bethe-Bloch equation [PDG]:

$$-\left\langle\frac{\mathrm{d}E}{\mathrm{d}x}\right) \propto z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln\left(\frac{2\gamma m_e c^2 \beta^2 K}{I^2}\right) - \beta^2 - \frac{\delta}{2}\right]$$

where K is the energy of the particle and I is the excitation energy

- It take 3.6 eV to make an electron-hole pair
- A 1 GeV pion passing through silicon releases ~400 eV/ μ m
- You get about 100 electrons produced for every micrometer of silicon in your detector

Design: The pn junction

- Silicon has 4 valence electrons
- Dope with a 5 valence element and you make an n-type material (donors)
- Dope with a 3 valence element and you make an p-type material (acceptors)
- Combine a p and n material and you create a depletion zone at the boundary and a pn junction where there's an electric field
- Apply a positive voltage to the n material and a negative voltage to the p material and we have a reverse-biased diode
- If we fully deplete the region, no charge can flow without external influence (our particles)
- Particles release energy in the silicon, create electron-hole pairs which we can pick up in our strips or pixels
- Width (W) of the depletion region

Backplane, $\hat{n^+}$ - type silicon $\overset{\diamond}{+}$ Bias Voltage

Principles of operation

INTT

INTT Silicon Tracker

Assembled INTT Silicon Ladder

INTT assembly in Taiwan

Taiwan Silicon Detector Facility (TSiDF)

Assembly Unit : Half-ladder

Assembly procedures :

- 1. Chips glued on HDI then wire-bonded
- 2. Sensors glued on HDI then wire-bonded
- 3. Encapsulate all wire-bonds
- 4. Thermal cycles modules

Ladder assembly procedures :

• 2 half-ladder glued on stave

- Pick up tools Assembly tray
 - INTT assembly family on Gantry

Rong-Shyang Lu Lian-Sheng Tsai

Wei-Che Tang

Jenny Huang

Kai-Yu Cheng Cheng-Wei Shih

Ou-Wei Cheng

Status of Intermediate Silicon Tracker, G. Nukazuka (RBRC)

FPHX Chip/Produced by FNAL

Developed for Forward Vertex Detector for PHENIX at Fermi Lab.

Barrel Assembly Completion

Installation to sPHENIX

Performance of INTT Silicon Sensors

Reconstructed z-vertex proven to be consistent between MBD and INTT

MVTX

Cameron Dean

3rd sPHENIX in Asia Meeting

NCU, Taiwan

11/17/2022

The MAPS-based Vertex Detector

- Comprises of 3 layers of monolithic active pixe sensors using the ALICE ALPIDE
- The front-end readout uses the ALICE Readou
- The back-end uses the ATLAS FELIX
- Records from 2.5 cm to 4.5 cm, radially
- 226,492,416 pixels!

ALPIDE thickness [μ m]	50
Pixel size [μ m] / matrix	29 x 27 / 1024 x 512
Technology	180nm CMOS
Power Consumption [mW/cm ²]	40 (mean), 300 (peak)
Stave Material Budget	0.3% X ₀
Timing resolution [μ s]	~5-6
XZ spatial resolution [μ m]	< 6

• 27 cm active length/stave

SPHE

Design: Monolithic active pixels sensors

- Use Complementary Metal Oxide Semiconductor (CMOS) technology to build pixel directly on chip
- No bump bonding
- Small P-N width, no depletion voltage needed!
- Pixels can be small
 - Not driven by etching, bump size or placement precision
- Resolution is based on pixel size, p or pitch

$$\sigma_x = \sqrt{\langle \Delta x^2 \rangle} = \frac{\text{pitch}}{\sqrt{12}} \text{ where } \langle \Delta x^2 \rangle = \frac{1}{p} \int_{-p/2}^{p/2} x^2 dx$$

ALPIDE design for ITS-2 and sPHENIX MV

Design: Hybrid pixels

- Hybrid pixel detectors have 2 components
 - 1. A readout chip (typically ASIC for speed)
 - 2. A pixel matrix
- Each pixel must be bump-bonded to its chip readout
- Resolution is based on pixel size, p or pitch

$$\sigma_x = \sqrt{\langle \Delta x^2 \rangle} = \frac{\text{pitch}}{\sqrt{12}} \text{ where } \langle \Delta x^2 \rangle = \frac{1}{p} \int_{-p/2}^{p/2} x^2 \, dx$$

Pitch is typically 50 – 100 μm

Timepix3 ASIC bump-bonded to a wafer, https://medipix3

Medipix ASIC bump-bonded to a wafer, http://x-ray.camera/technology/flip-chip-bonding/

Physics capabilities

Left – MVTX spatial resolution as a function of trigger delay from test beam Middle – MVTX track resolution from test beam Right – sPHENIX DCA_{XY} resolution from simulation

MAPS Signal Processing Design

MVTX, C. Dean

SPHENIX

MVTX construction

TPC

What's a Time Projection Chamber ?

- Time Projection Chamber (TPC)
- Gaseous Drift Detectors
 - Big cylinder filled with (mostly) noble gas (Ne, Ar, etc...) and electric field
 - Particles come in, ionize gas, make electrons (and ions)
 - Electrons drift to anode plane are read out

Source: https://www.lctpc.org/e8/e57671

What's a Time Projection Chamber

How TPC Works?

- The rφ position (coordinates perpendicular to the cylinder axis) of the trajectory can be reconstructed directly from the coordinates of its projection on the pad plane.
- The z position (coordinate along the cylinder axis) is reconstructed from the drift time (time between particle passing the TPC volume and measured signal on the pads).
- Therefore an external timing information, e.g. from a silicon detector is needed.

Multiplication Region – How do you get those high fields

- Gaseous Electron Multiplier (GEM) Foils

 Creates specific field shape in holes
 Inside holes Townsend Avalanche
- Copper/Katpon/Copper w/ holes

50 µm depth
70 µm hole diameter

- Form stack with mutiple (4) foils
 - $\circ\,$ Each GEM in the stack has varying pitch between holes

CHARLES HUGHES - UTK RHIP SEMINAR -

Cathode

📕 GEM

GEM

I GEM

Anode

Field

sPHENIX TPC Overview

- Gaseous Drift Detector
 - Ar/CF₄ 60:40 % drift gas
 - O(13 µs) drift time
 - GEM (Gaseous Electron Multiplier) amplification
 - 4 Kapton + Copper GEMs / module
 - Un-gated like ALICE TPC
 - Allows for streaming readout
 - Zig-zag segmented copper sensor pads
 - Improves position resolution
- 72 GEM modules/2 sides
 - 36 modules / full φ
 - 3 modules / full r
 - $20 < r < 78 \text{ cm}, |\eta| < 1.1, \text{full } \phi$
- Measures Momentum
 - Target momentum resolution:
 - Δp/p = 0.02 * p
 - O(150 μm) spatial resolution

Momentum Resolution w and w/o TPC

TPOT - Time Projection chamber Outer Tracker

- Gaseous Drift Detector
 - Ar/HC(CH₃)₃ 95:5 % drift gas
 - 3 mm drift length
 - Micromegas amplification
 - Resistive layer w/ strips for readout

- 8 modules/bottom of TPC
 - Fully covers 1 TPC sector/side
 - Partially covers 2 other TPC sectors/side

- Provides reference for TPC

SPHENIX

- O(100 µm) spatial resolution
- Provides check for TPC calibration

Charles Hughes (Iowa State University) advancing the understanding of non-perturbative QCD using energy flow

Calorimeter System

Calorimeters

- Total absorption Type
 - High energy resolution
 - Low position resolution
 - Pb-Glass, etc.
- 11x11 cm² 37 cm

- Sampling Type
 - High position resolution as a trade off of lower energy resolution
 - Pb, W, Fe… as absorber
 - Sensors
 - Scintillation fibers, silicon sensors, etc
 - Pixel sensors for shower max

Sampling Type Calorimeters

sPHENIX Calorimeters

Outer

HCal

MAGNET

EMCAL

Inner

HCal

Outer HCal: Steel absorber plates and scintillating tiles with embedded WLS fibers Inner HCal: Al absorber plates and scintillating tiles with embedded WLS fibers

Resolution ~ 88%/ $\sqrt{E \oplus 12\%}$ (single particle) for overall HCal.

EMCal: Tungsten-scintillating fiber sampling calorimeter (SPACAL type). $18X_0, 1\lambda, \Delta\eta \times \Delta\phi = 0.025 \times 0.025$ Resolution ~ 16%/ $\sqrt{E} \oplus 5\%$.

Electromagnetic Calorimeter (EMCal)

Calorimeter System(EMCal+iHCal+ oHCal)

- ✓ Compact, hermetic, near-projective sampling calorimeters
- ✓ Coverage |η| < 1.1, 2π in φ
- $\checkmark\,$ SiPM readout for both EMCal and HCal
- ✓ Less-biased jet measurement
- ✓ All Calorimeter electronics complete!

Electromagnetic Calorimeter (EMCal)

- ✓ Tungsten/scintillating fiber SPACAL
- $\checkmark\,$ ~7mm radiation length
- ✓ Δη x Δφ = 0.025 x 0.025
- ✓ Good energy resolution $\sigma_E/E \le 16\%/\sqrt{E}$
- ✓ Sector Installation underway 10/64

sPHENIX EMCal

The.

sPHENIX EM calorimeter

Full calorimeter covers 2π in azimuth and $|\eta| < 1.1$

EMCal:

Sampling calorimeter of scintillating fibers embedded in tungsten blocks
Δη × Δφ = 0.025 × 0.025 towers

Calorimetry: EMCal

Di-photon mass distribution shows expected π^0 peak

SPHENIX School

Tiles, Segmentation, and Tilt

- Fanning out radially from nominal collision vertex
- tilted away from radius so that a radial particle would go through multiple tiles/sector
- Tilt in phi is different for inner/outer
- Sector boundaries between

Assembly pictures

Schematic & Channel

Nι	Numbering South Half										North Half													
	2	0	6	4	1	8	1	1				Download and a second sec											~	
	3	1	7	5		9	4	13																
South Channel Block (Third) Middle C							le Ch	1anne hese char	el Block (Third) Annels match the scheme in the South Channel Block, but are different for the PHENIX HBDs and the							hird)	HENIX							

What the HCal measures

School

SPHE

IX

XI International Conference on New Frontiers in Physics, Aug.30 - Sep. 11, 2022

Hadronic Calorimeter (HCal)

Inner Hadronic Calorimeter (iHCAL)

 ✓ Aluminum-scintillating tiles with embedded WLS fibers

Outer Hadronic Calorimeter (oHCAL)

- ✓ Tilted steel plates/scintillator tiles with embedded WLS fibers
- ✓ Δη x Δφ = 0.1 x 0.1 towers
- ✓ Installation complete!

Dijet Event in Run 2023 Au+Au Data

SPHEN

- Acceptance
 - $-1.1 < \eta < 1.1$
 - $0 \leq \phi < 2\pi$
- Details
 - OHCal
 - low-carbon, magnet steel absorber
 - 7.22m (z) × 0.865m (r) × {0.357 m, 0.527m} (φ)
 - 12,105.5 kg x 32 modules (sectors)
 - IHCal
 - aluminum absorber
 - 4.35m (z) × 0.235m (r) × {0.223 m, 0.27m} (∅)
 - 907.2 kg x 32 modules (sectors)
- Sampling detector
 - 7,680 (O) + 6,144 (I) scintillating tiles (POPOP-doped polystyrene)
 - tapered, tilted metal plates
 - Arrangement of each sector
 - 5 (O) or 4 (I) tiles per cell, 24 cells in η by 2 cells in ϕ
 - Segmentation: $\Delta \eta / \eta_{\text{total}} \sim 0.1$, $\Delta \phi / 2\pi = 0.1$

SPHENIX School

Tiles, Segmentation, and Tilt

- Fanning out radially from nominal collision vertex
- tilted away from radius so that a radial particle would go through multiple tiles/sector
- Tilt in phi is different for inner/outer
- Sector boundaries between

Assembly pictures

Schematic & Channel

Numbering South Half										North Half														
	2	0	6	4	1	8	1	1				Description and a formula												
	3	1	7	5		9	4	13															~	
South Channel Block (Third) Middle							le Ch	Channel Block (Third) North Channel Block, but are diff							h Ch	anne	nnel Block (Third)							

What the HCal measures

School

SPHE

IX

sPHENIX Event Plane Detector (sEPD)

Built to determine the collision geometry \rightarrow Impact Parameter

Forward Particle Distributions

- sEPD 2.0 < $|\eta|$ < 4.9 • MBD: 3.51 < $|\eta|$ < 4.61
- Large acceptance with azimuthal symmetry with h gap from mid-rapidity is very useful for many analyses
 - Especially important for small systems

Sector Design

- 2 Wheels of 12 sectors with 31 optically-isolated tiles
 - 1.2-cm-thick scintillator
- Total of 12x31x2=**744 channels**
- R_{outer} = 0.9 m, R_{inner} = 4.6 cm
- Planned location of ~z = 319 cm
 - 2.0 < |η|< 4.9
 - STAR: 375 cm (2.1 < $|\eta|$ < 5.1)
 - PHENIX BBC: $(3.1 < |\eta| < 3.9)$
 - sPHENIX MBD: 250 cm (3.51 < $|\eta|$ < 4.61)
- Wavelength shifting fibers (3x loops) glued into tiles
- Machined out of a single piece of scintillator

Isolation Grooves

Mill "half-way" and fill groves with TiO_2 + epoxy mixture (reflective epoxy)

Optical isolation!

Flip over and finish milling the groves + Fiber channels

WLS Fiber Preperation

Connectors polished prior to gluing, inserts for panel screws

Decreases cross-talk

Fiber ends painted \rightarrow Increases light yield by ~30-50%

sEPD Sector Construction

Optical Isolation is important! Sectors will be checked after construction

- Connector glued into place (reflective epoxy), then fibers (optical epoxy)
- Central channel and front grooves filled with reflective epoxy
- Tape removed and scintillator polished

Clear Fiber Bundles

- Purpose: carry signal to the electronics
- Clear fibers were cut to a length of 6.8 meters
- The fibers were put into thick tubing measuring 4.4 meters
- Fibers glued into a connector

63

sEPD Install 2024

Rosi Reed - sEPD Collab 2024

Tristan

Protzman

Belmont

First data

Number of "hits" per tile divided by # of collisions in the run

Further calibration and data processing in progress

Event plane resolution matches simulation!

Minimum Bias Detctor (MBD)

Charged Particle Detector

Minimum Bias Detector

Rapidity Coverage [3.51 < |η| < 4.61]

- Reuse of the PHENIX Beam-Beam Counter
- 128 channels of 3 cm thick quartz radiator on mesh dynode PMT
- 120 ps timing resolution

- Each element is assembled by Quartz Cherenkov radiator(β_{th} =.7) and meshed dynode PMT.

Collision Vertex initial point of charged particle tracking

Role of MBD

Centrality Determination Impact Parameter Determination with ZDC

Minimum Bias	Time-Zero	Reaction Plane					
Trigger	Determination	Determination					
Level1 Trigger with Online Vertex Cut	Start Timing for ToF Measurements	Direction of Impact Parameter					

BBC Guys

DC : Toru Sugitate

contact person Kensuke Homma

Tomoaki Nakamura

Hiroyuki Harada

Takashi Hachiya

Kenta Shigaki

Yuji Tsuchimoto

Akitomo Enokizono enoki@hepl.hiroshima-u.ac.jp

Kota Haruna

- Yuji Tsuchimoto - PHENIX Focus - BBC -

Ryota Kohara

Zero Degree Calorimeter (ZDC)

Neutron Detector

ZDC Location

ZDC as Neutron Detector

72
ZDC Compartments

FIBER RIBBON

Shower Max Detector (SMD)

Electromagnetic shower development

□ Simple qualitative model for shower development (Heitler)

- Consider only: bremsstrahlung and pair production
- Each electron with E > $E_{\rm c}$ travels $1X_0$ and then gives up half of its energy to a bremsstrahlung photon
- Each photon with E > $E_{\rm c}$ travel $1X_0$ and then undergoes pair production with each created particle receiving half of the energy of the photon
- Electrons with $\mathsf{E} < \mathsf{E}_\mathsf{c}$ cease to radiate and lose remaining energy through ionization

2

3

Total number of particles after $t X_0$:

$$\mathcal{N}(t) = 2^t = e^{t \ln 2}$$

Average energy of shower particle at depth t:

 $E(t) = E_0/2^t = E_0/e^{t \ln 2} \qquad t_{max} = \ln(E_0/E_c)/\ln 2 \propto \ln(E_0)$ $E(t) = E_c$

$$N_{max} = e^{t_{max}\ln 2} = E_0/E_c$$

After $t=t_{max}$: ionization, compton effect and photoelectric effect!

Shower Max Detector (SMD)

X-Y plastic strip scintillator hodoscopes
(Δx, Δy ~1 cm)

 $\succ \quad x, y = \frac{\sum_{i}^{\#SMD} E(i) \times pos(i)}{\sum_{i}^{\#SMD} E(i)}$

Reconstructed x,y Position of Neutrons

Incident neutron energy (GeV)

Local Polarimeter

ZDC (Zero Degree Calorimeter)

MD (Shower Maximum Detect

