Jet Physics in Heavy Ion Collision - with My Ph.D work -

RIKEN

Takuya Kumaoka

T.Kumaoka

Self Introduction

T.Kumaoka

- 1. Introduction of the Jet Physics for the QGP study (15 min)
- 2. Experimental technic [ALICE det + centrality + jet reco] (10 min)
- 3. My Ph.D work (8 min)
- 4. What can we do using sPHENIX. [advantage of sPHENIX] (7 min)

Ex: Details of jet reconstruction (Parameters of jet reconstruction, main cuts, backgrounds, unfolding, systematic uncertainties, and etc...)

1. Introduction of the Jet Physics for the QGP study

T.Kumaoka

What is Quark-Gluon Plasma (QGP) QGP: A phase of matter at *extremely* high temperatures or densities. Matter Phase

Ice Water Steam

In QGP, the quarks and gluons behave as free particles. Strong (quantum chromodynamics: QCD) interaction dominates.

T.Kumaoka

QGP in the early Universe

In the early universe (~10 μ s), the QGP is expected to have formed.

The QGP becomes a hadron gas state soon.

The QGP studies

 \rightarrow Clarify this universe evolution.

 \rightarrow Elucidate the process from elementary particles to hadrons.

T.Kumaoka

QGP Creation by Heavy Ion Collisions

We want to clarify *QGP properties*, temperature, density, interactions, and etc... \rightarrow Produce the QGP by **Heavy Ion Collisions (HIC)** with a large collider (<u>LHC/RHIC</u>).

Collision system: pp, pPb, PbPb, XeXe Collisional energy: \sqrt{s} , $\sqrt{s_{NN}} = 2.76 - 14$ TeV

https://www.youtube.com/watch?v=pQhbhpU9Wrg

T.Kumaoka

T.Kumaoka

Methods to Study the QGP properties

<u>Direct observation of the QGP is mostly impossible</u> because of its tiny size and short life time.

 \rightarrow Use high-momentum partons (quark/gluon) that traverse the QGP medium.

T.Kumaoka

Hard Probes for the QGP: Advantage (1)

Hard probes: <u>High momentum rare transfer</u> events (High momentum parton)

The production rates are <u>calculable within **perturbative** QCD (pQCD)</u>
 →The hard probes, which are measured in the pp collisions, are used as <u>the reference</u> for the one measured in the Pb–Pb collisions.

Hard Probes for the QGP: Advantage (2)

- Hard probes are created in the <u>initial collision</u> of the <u>same event</u> <u>of the QGP creation</u>
- \rightarrow The experimental signals of the hard probes contains the history of its interaction with the QGP.

11/36

T.Kumaoka

What is a jet?

A parton is fragmented into a hadron collimated shower.
→ Detect as a jet of hadrons
→ Experimental signatures of quarks or gluons

p-p measurements match
pQCD theoretical predictions

T.Kumaoka

Parton Energy Loss Measurement

Nuclear Modification Factor (R_{AA})

Use the difference between with and without suppression **> Sensitive to magnitude of suppression**.

T.Kumaoka

Jet azimuthal anisotropy (v_2^{jet})

Use non-central heavy ion collisions

 $v_2^{\text{jet}} \propto N_{\text{in}}^{\text{jet}} - N_{\text{out}}^{\text{jet}}$ $N_{\text{in}}, N_{\text{out}}$: Jet yield in the in-/out-of-plane, respectively $\Delta E_{\text{out}} > \Delta E_{\text{in}} \Rightarrow v_2^{\text{jet}} > 0$

Use difference of the path length between in-plane and out-of plane \rightarrow Sensitive *L* dependency of ΔE .

T.Kumaoka

Current status on the study of the parton energy loss

- LHC-ALICE jet R_{AA} ($\sqrt{s_{NN}} = 2.76$, 5.02 TeV) and v_2 ($\sqrt{s_{NN}} = 2.76$ TeV) $\frac{\text{https://arxiv.org/pd}}{\text{https://doi.org/10.10}}$

https://arxiv.org/pdf/2303.00592.pdf https://doi.org/10.1016/j.nuclphysa.2016.03.006

- LHC-ATLAS jet R_{AA} and v_2 ($\sqrt{s_{NN}} = 2.76, 5.02 \text{ TeV}$)

https://cds.cern.ch/record/2853755/files/ATL-PHYS-PUB-2023-009.pdf https://journals.aps.org/prc/pdf/10.1103/PhysRevC.105.064903

These results indicates the jet suppression and azimuthal anisotropy exist ($R_{AA}^{jet} < 1$, $v_2^{jet} > 0$). \rightarrow However, they do not still clarify the energy loss mechanisms and quantify their parameters.

T.Kumaoka

2. Experimental technic ~ALICE det + centrality + jet reco~

T.Kumaoka

ALICE Detector in Run-2

The ALICE detector is designed to study the QGP properties. The experimental setup is divided in mainly three parts: (1) The central barrel covering the collision point (-0.9 < η < 0.9) [ITS, TPC] (2) The muon arm to detect forward-direction muons (-4 < η < 2.5) (3) The global detector for selecting collision events [V0 detector]

Property Height/Width: 18 m Length: 26 m Weight: 10,000 t

Magnet: 0.5 T

T.Kumaoka

Centrality

Centrality: Degree of a geometrical overlap between the collision two nucleon. \rightarrow It gives a geometrical information of the QGP medium, size and shape.

T.Kumaoka

V0 Detector

Two end cap scintillating detector (VOA, VOC), VOM: VOA+VOC

Using NBD-Glauber fit for VOM amplitude, the event centrality is determined.

T.Kumaoka 2024/Nov/19 Jet Physics@Korea University

V0 Detector for Event Plane

Determine the event plane angle (Ψ_2) using the V0 amplitude distribution for azimuthal angle.

 $\Psi_{\mathrm{EP},n}$: Higher harmonic event plane ϕ : Azimuthal angle of emitted particles

21/36

T.Kumaoka

n: Fourier order)

Inner Tracking System / Time Projection Chamber

In my analysis, the only charged tracks were used to reconstruct jets. \rightarrow Detector: Inner Tracking System (ITS) and Time Projection Chamber (TPC) Acceptance: $|\eta| < 0.9, 0 < \phi < 2\pi$ Reconstructed tracks

T.Kumaoka

Anti- $k_{\rm T}$ signal jet reconstraction

 $k_{\rm T}$ Merge track transverse momentum $(k_{\rm T})$ from the track anti- $k_{\rm T}$ jet yield distribution for pT *R*^{track} having highest $k_{\rm T}$ to minimize d_{ii} counts ALICE Pb-Pb Anti-k_T Charged Jet $\sqrt{s_{\rm NN}} = 5.02 \, {\rm TeV}$ $R = 0.2, |\eta_{\text{iet}}| < 0.7$ in resolution paramter (R) range. k_T Leading track cut 10 5 [GeV/c] Centrality 0-5% $d_{ij} = \min(k_{ti}^{-2}, k_{tj}^{-2}) \Delta R_{ij}^2 / R^2$ 10 **R**^{track} $(anti-k_T)$ 10 k_{T} R 10³ 10 **R**^{track} 10 This work R $k_{\rm T}$ 200 250 p_{T.jet} (GeV/c) 50 100 150 *R*^{track}

T.Kumaoka

2024/Nov/19 Jet Physics@Korea University

23/36

Spectrums inclusvive, and in, out-of-plane

3. My Ph.D work ~Parton Energy Loss Toy Model Simulaiton~

T.Kumaoka

Physics target: Parton Energy Loss Mechanism Models

Partons deposit energy in the QGP medium within different mechanisms. Energy loss

 $\Delta E = \hat{e}_n L^n$ (\hat{e}_n : energy loss per unit path-length, L: path length in the QGP medium)

Includes QGP properties:

QGP viscosity (η/s), Temperature (T), Coupling constant (α_s)...

Parton energy loss mechanisms: (These mechanisms suggest different *n*)

Which of these mechanisms dominates the energy loss is not yet clarified. The parameters have not been quantified yet.

T.Kumaoka

Previous study of the *n* detemination

For strong constraints on the parton energy loss models depending on the path length, the v_2 and R_{AA} of π^0 measurement using PHENIX $\sqrt{s_{NN}} = 200$ GeV data (2010) were conducted. https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.105.142301

The results indicates the n = 3 model is better than the n = 2 case.

However, a π^0 particle contains <u>only partial information</u> of the original parton.

T.Kumaoka

Concept of my parton energy loss simulation

Evaluate the parton energy loss parameters (\hat{e}_n , n) and constrain the models using both the measurements R_{AA}^{jet} and v_2^{jet} .

• Connect the path length obtaind by MC simulation to the observables (R_{AA}^{jet} and v_2^{jet}).

Overview of Simulation Algorithm Flow

T.Kumaoka

2024/Nov/19 Jet Physics@Korea University

29/36

Jet R_{AA} and v_2 comparison with the data results

Energy loss: $\Delta E = \hat{e}_n L^n$							
	<i>n</i> = 1	<i>n</i> = 2	2	<i>n</i> = 3			
\hat{e}_n [GeV/fm ⁿ]	1.9	0.52		0.14			
$\chi^{2} = \sum_{i} \frac{(\text{Obs}_{i} - \text{Sim})^{2}}{(\sigma_{\text{data},i})^{2}} / \text{NDF}$ $Obs_{i} : Observation, Sim: Simulation,$ $\sigma_{\text{data},i} : \text{Measurement Uncertainty}$ $\text{NDF} = \# \text{ of } p_{\text{T}} \text{ bins} - 1 \text{ (Free parameter } \hat{e}_{n}) = 5$ Significance level 0.05: $\chi^{2}(5) < 11$							
20 -	- 1	<u> </u>	20	2			

	<i>n</i> = 1	<i>n</i> = 2	<i>n</i> = 3
χ^2 ($R_{ m AA}^{ m jet}$)	0.29	0.31	0.52
χ^2 (v_2^{jet})	2.9	31	72

 \rightarrow Only n = 1 simulation result is consistent with both R_{AA}^{jet} and v_2^{jet} measurements very well. And energy loss parameter is quantified as $\hat{e}_1 = 1.9$ GeV/fm!!

T.Kumaoka

Summary/Open Issues/Outlooks of my simulation

Summary

We connected the measurements of $R_{AA}^{jet} \& v_2^{jet}$ and my developed simulation.

- \rightarrow Quantified the parton energy loss parameters (\hat{e}_n, n)!
- Open Issues
- Still do not identify the parton energy loss mechanism.
- Not enough to show soundness of my simulation, which has some strong assumptions.
- Outlooks
- Compare with other centrality results
- Compare with other experiments (LHC-ATLAS, RHIC-sPHENIX, and etc...)
- Compare with other simulations (LBT, JETSCAPE, and etc...)

4. What can we do using sPHENIX ~Advantages of sPHENIX~

T.Kumaoka

sPHENIX Detector Construction and the Advantages

EMCal+HCal (iHCAL+oHCal)

- Estimate the energy of both **charged and nutral** hadrons
- They cover **full** azimuthal angle (ϕ)

INTT

• Estimate the vertex point

sEPD

• Determine the event plane angle

TPC

- Identify kinds of particle in the jet
- Improve the jet p_{T} resolution

T.Kumaoka

Jet Measurement by EMCal+HCal (iHCAL+oHCal)

- The full ϕ range calorimeter enable to back-to-back event study.
- → Enable to study the energy loss difference between back-to-back particle.
- jet-jet (di jet): path length difference.
- γ -jet: γ does not QCD interaction with the QGP.
- \rightarrow The difference is obvious energy loss of the parton.

Jet Measurement by EMCal+HCal (iHCAL+oHCal) (2)

- The jet modification is expected for not only momentum but also the QGP shape.
- Recoiled and fluid particles.
 → It is expected to make shock-wave.
- 2. QGP makes jet broadening.
- \rightarrow Jet shape is also expected to be modified the shape.

Jet Measurement by INTT

Heavy fravor(HF) quark has secondary vertex (HF hadron flight and decay). The b hadron flight longer than c hadron.

INTT detector can estimate secondary vertex and distinguish b and c.

- Seach for the suppression difference between flavors.

- Evaluate the HF components in the QGP medium.

T.Kumaoka

Jet Measurement by TPC

- TPC can identify kinds of charged hadrons.
- Estimation of pT of charged hadrons improve the jet momentum.

TPC identify particles

 \rightarrow Clarify the QGP effect for jet components. \rightarrow Identify g/q jets.

T.Kumaoka

We have still not understhand the QGP properies, jets, and jet modification.

sPHENIX experiment has a lot of potencials!!

Let us to study QGP properties using jets!!!

T.Kumaoka