Experimental Jet Reconstruction Way

RIKEN Takuya Kumaoka

T.Kumaoka

Perpose of the jet reconstruction

Main perpose:

Reconstruct original highmomentum parton.
→ Such parton fragments
into many hadrons shower.

By comparing with simulations, we extract jet's and parton properties.

T.Kumaoka

Brief Jet Analysis Flow

1. Track clustering algorithm (ex: anti- k_{T})

2. Background subtraction

3. Unfolding

4. Systematic uncertainties estimation

 p_{T}

jet yield

BKG sub

Sys Unc

unfolded

T.Kumaoka

jet yield

2024/10/01 Experimental Jet Reconstruction Way

 p_{T}

1. Jet Reconstruction way

T.Kumaoka

Major Jet Reconstraction Ways

There are three major jet reconstraction ways: anti- k_{T} , Cam/Aachen, k_{T}

All algoriths make clusters to minimize d_{ij}

$$d_{ij} = \min(k_{ti}^n, k_{tj}^n) \Delta R_{ij}^2 / R^2$$
, (anti- k_T : $n = -1$, Cam/Aachen: $n = 0$, k_T : $n = 1$)

Summarize slide:

https://indico.cern.ch/event/367368/contributions/1783356/attachments/730376/1002150/HEPP2015 Presentation.pdf

Reconstracted clusters by each algorithm

T.Kumaoka

2024/10/01 Experimental Jet Reconstruction Way

 $R = \sqrt{\eta^2 + \phi^2}$

Anti- $k_{\rm T}$ signal jet reconstraction

T.Kumaoka

2024/10/01 Experimental Jet Reconstruction Way

6/21

Leading track cuts (Remove combinatorial jets)

Merging a log of small p_T tracks, which are not came from a signal parton, can make a jet. \rightarrow It is called *combinatorial jet*.

T.Kumaoka

counts

10⁸

 10^{7}

By requiring the leading track cut, highest p_T track in a jet, we can remove them. However, it has a bias, so we need to take care. (3-7 GeV/c)

2024/10/01 Experimental Jet Reconstruction Way

ALICE Pb-Pb

 $\sqrt{s_{\rm NN}} = 5.02 \text{ TeV}$

2. Background subtraction

T.Kumaoka

Background p_{T} distribution (ordinary inclusive jet way)

T.Kumaoka

 \Rightarrow Estimate background p_{τ} density (ρ) except for signal jet area $\rho = \text{median}(p_{\text{T}.i}/A_i)$ A : cluster area, i: cluster id

 \rightarrow Signal jets are reconstructed with the background particles.

background p_{T} for centrality

 ρ is considered uniform for azimuthal angle and determined event by event \rightarrow subtract the background from each signal jet

$$p_{T,corr}^{jet} = p_T^{jet} - \rho A$$

A : jet area

Jet p_T distribution before/after background subtraction

Subtracting bkg moves the jet distribution to low p_T direction.

T.Kumaoka

2024/10/01 Experimental Jet Reconstruction Way

10/21

Background subtraction considering the azimuthal anisotoropy

The actual background is not uniform for the azimuthal angle (ϕ).

For the inclusive jet analysis, the difference does not affect to the results.

However, for the measurements depending azimuthal angle like the jet v_2 , the effect is not negligible.

T.Kumaoka

 \rightarrow Following slides show the stimation way and quality check ways.

Local background p_{T} estimation

The soft particle background is **not uniform** for azimuthal angle (ϕ).

 \rightarrow The background calculation should take the ϕ dependency into account.

The local rho is estimated using tracks except the leading jet η region. (Because of the statistic problem, it includes the sub-leading jet region.)

In this analysis, a following equation is used.

$$\boldsymbol{\rho}_{ch}(\boldsymbol{\varphi}) = \boldsymbol{\rho}_0 \times \left(1 + 2 \left\{ v_2^{obs} \cos(2[\boldsymbol{\varphi} - \Psi_{EP,2}]) + v_3^{obs} \cos(3[\boldsymbol{\varphi} - \Psi_{EP,3}]) \right\} \right)$$

 $\Psi_{EP,2}$ and $\Psi_{EP,3}$ are calculated by the Qn vectors. And ρ_0 , v_2^{obs} , and v_3^{obs} are fitting value.

12/21

T.Kumaoka

Local background p_{T} results

 $\rho_{ch}(\varphi) = \rho_0 \times \left(1 + 2 \left\{ v_2^{obs} \cos(2[\varphi - \Psi_{EP,2}]) + v_3^{obs} \cos(3[\varphi - \Psi_{EP,3}]) \right\} \right)$

2024/10/01 Experimental Jet Reconstruction Way

T.Kumaoka

Evaluation of background fit (δp_T)

 δp_T is a gap between integration of background tracks p_T and integration of background function in a random cone area.

We expect the local rho's δp_T should be smaller than the median one. And in the local rho case, δp_T phi dependency is expected to make small.

The Random cone is created once per event except the leading jet region.

T.Kumaoka

The background δp_{T} distribution

- The median rho has ϕ dependency and the local rho makes smaller the ϕ dependency.
- <u>The dispersion of local rho background is more narrow than median rho.</u>
 And these same tendency is seen in the all centrality regions.

T.Kumaoka

Background pT function fit quality

T.Kumaoka

3. Unfolding

T.Kumaoka

Unfolding Process

The measured jet p_T distribution is affected by the background fluctuations and the finite resolution / efficiency of the detector

 \rightarrow Correcting p_{T} distribution distortions by using the **unfolding** procedure.

T.Kumaoka

Response Matrix

Response matrix (RM) prepresents the jet p_T relation between truth and data.

The RM inversion is not simple. RM \rightarrow RM⁻¹.

 \rightarrow Use unfolding package: RooUnfolding[<u>link</u>] (Baysian, SVD, and etc..)

T.Kumaoka

Unfolded jet p_T distributions

Unfolding modify the jet distribution shape by considering the jet's p_{T} shift.

T.Kumaoka

3. Unfolding

T.Kumaoka

Kinds of Systematic Uncertainties

By chenging the parameters, we estimate systematic uncertainties.

Depends on the measurements and the value also depends on experiments.

Example

- Tracking efficiency (98%, 94%)
- Detector level p_{T} range in the response matrix ($\pm 5 \text{ GeV}/c$)
- Unfolding iterations (±1)
- Unfolding different prior (Modify input MC simulation)
- + Event Plane Analysis
- Different background fitting function (Two type functions)
- Different event plane angle determination detector (VOM, VOA, VOC)

T.Kumaoka

Backup Slides

T.Kumaoka

2024/10/01 Experimental Jet Reconstruction Way

23/21

Simple Jet Reconstraction Code

```
int main () {
 vector<PseudoJet> particles;
 // an event with three particles: px py pz
                                                        Ε
 particles.push_back( PseudoJet( 99.0, 0.1, 0, 100.0) );
 particles.push_back( PseudoJet( 4.0, -0.1, 0, 5.0) );
 particles.push_back( PseudoJet( -99.0, 0, 0, 99.0) );
 // choose a jet definition
 double R = 0.7;
  JetDefinition jet_def(antikt_algorithm, R);
 // run the clustering, extract the jets
 ClusterSequence cs(particles, jet_def);
 vector<PseudoJet> jets = sorted_by_pt(cs.inclusive_jets());
 // print out some info
  cout << "Clustered with " << jet_def.description() << endl;</pre>
 // print the jets
  cout << "
             pt y phi" << endl;
 for (unsigned i = 0; i < jets.size(); i++) {</pre>
    cout << "jet " << i << ": "<< jets[i].pt() << " "
                   << jets[i].rap() << " " << jets[i].phi() << endl;</pre>
   vector<PseudoJet> constituents = jets[i].constituents();
   for (unsigned j = 0; j < constituents.size(); i++) {</pre>
      cout << " constituent " << j << "'s pt: "<< constituents[j].pt() << endl;</pre>
    3
 }
```

T.Kumaoka

}