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Introduction of QGP physics



Elementary particles

• Quarks are elementary particles that are the smallest building blocks 
of matter.



Quark Confinement

• Quarks is confined within hadrons 
such as mesons and baryons.

• The dynamics of quarks and gluons 
is described by the Quantum 
Chromodynamics (QCD).

• The force between quarks does not 
weaken even as the distance 
increases

➢Quarks cannot be isolated

3 quark: Baryon 2 quark: meson 

Proton Neutron Pion

QED

QCD



Asymptotic freedom

• Interaction strength between 
quarks and gluons depends on 
momentum transfer Q

Low  ← Temperature  → High

Large ← Distance → Small

Weak Interaction @ High Q

high temperature/ high density

Quarks and gluons behave almost 

free

Strong Interaction @ Low Q

low temperature / low density

Quarks and gluons are confined



QCD matter

• In high temperature and high 
density, Quark-Gluon Plasma (QGP), 
where quarks and gluons move 
freely, is realized.

• Early Universe

• The lattice QCD predicts the critical 
temperature is 150-200 MeV.



Introduction of high-energy 
heavy ion collision experiments



Heavy Ion Collision Experiments

• Heavy nuclei, such as gold or 
lead, are accelerated to near the 
speed of light and collided with 
each other to create QGP.

Unique opportunity to study 
QGP experimentally.
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sPHENIX
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JPARC-HI
FAIR
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Time evolution of heavy ion collisions

Heavy ion collisions  involve various physics processes, not just QGP.

1. Before collision

2. Initial stage of the collision

3. QGP

4. Hadronization

0 fm ~1 fm ~10 fm



Probes to study properties of QGP

Impurity Probe
 Jet and Heavy Flavor

Transparent Probe
Photon and lepton

Collective behavior 

Flow



Kinematics variables of experimental observables

• Experimentally, particles after hadronization are measured.

• Transverse momentum:

• Azimuthal angle: φ

• Pseudorapidity: 𝜂 =
1
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Collision Geometry

• Collision geometry is characterized by 
impact parameter b, which is the 
distance between nucleus.

• b can not be directly measured.

• Centrality is used instead, which is 
calculated from particle multiplicity, 

0% 100%

Central Semi Central Peripheral

b



Flow in heavy-ion collisions



Initial geometrical anisotropy

• The overlapped area In semi central collisions is  almond shape.

• Anisotropy in coordinate space is transferred to anisotropy in 
anisotropy depending on the whether the mean free path λ is longer or 
shorter than the size of the system R.
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Two-particle correlation

• The measurement of two-particle correlation is useful to explore 
particle production mechanism

• Flow harmonics

• Two-particle correlation is measured as a function of Δη and Δφ

Δφ Δη

Trigger

Associate

Trigger

Associate



Two-particle correlation

Δφ Δη

Trigger

Associate

Trigger

Associate

Away side
Δφ〜π

Near side
Δφ〜０

• The measurement of two-particle correlation is useful to explore 
particle production mechanism

• Flow harmonics

• Two-particle correlation is measured as a function of Δη and Δφ



Ridge

• Associated yield per the number of trigger particles:

Ridge

PLB 724, 213  (2013) 

PLB 765, 193-220 (2017) 

Recoil jet Near-side jet

𝑌 ∆𝜂, ∆𝜑 =
1

𝑁𝑡𝑟𝑖𝑔

𝑑2𝑁

𝑑∆𝜂𝑑∆𝜑



Extract Flow Harmonics

• Fit the distribution with Fourier function

𝑌 ∆𝜑 = 1 + 2෍

𝑛=1

2𝑣𝑛 cos 𝑛∆𝜑

n=2 Elliptic flow v2 n=3 Triangle flow v3



vn vs Centrality in Heavy Ion Collisions

• v2 strongly depends on centrality
• v2 reflects the initial shape of the 

collision geometry.

• Higher order terms come from 
fluctuations.

• Hydrodynamic model describes 
the data with small η/s.

C.Gale, et. al, PRL 110, 012302 (2013)



Ideal Fluid

• QGP behaves like a ideal fluid with a very small η/s



Longitudinal dynamics

• The system also expand into the longitudinal 
direction.

• The pseudorapidity dependence of flow is sensitive 
to transport properties such as temperature 
dependent of η/s and hadronic viscosity



Flow in Small System



Small Collision System

• Small system refers to proton-proton and proton-nucleus collisions.

• QGP was considered not to be produced in small collision systems.
• Small system is conducted as reference experiments for larger collision systems



Hint of QGP in small system

• The ridge is also observed in high-multiplicity pp and p–Pb collisions at 
the LHC.

• Hint of collectivity in small collision system. QGP is created in small system? 

PLB 765, 193-220 (2017) PLB 724, 213  (2013) 



Geometry Scan 

• Several small collision systems were performed at RHIC.

Nature Phys. 15, 214-220 (2019) 

p–Au d–Au He–Au

𝜀2
𝑝𝐴𝑢

< 𝜀2
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v2 vs collision geometry

𝑣2
𝑝𝐴𝑢

< 𝑣2
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• Same ordering as the initial condition



The origin of collectivity in small system

• As the multiplicity decreases, the contribution of initial momentum 
anisotropy might be greater than that of geometrical anisotropy.

Observed vn

εn

εp



Comparisons with initial model 

• The initial state model fails to reproduce vn(pT): It 
underestimates v2 and overestimates v3.

• Gluons generated by CGC are fragmented using strings.

Nature Phys. 15, 214-220 (2019) , PRL 123, 039901 (2019)



Comparisons with hydro model

• The hydrodynamic model reproduces the data well 

➢Interaction in the final state is essential to reproduce vn

Nature Phys. 15, 214-220 (2019) 



Longitudinal dynamics in pA collisions

• pPb collision is asymmetric
• Larger multiplicity at forward thank at backward

• Long-range correlation and v2(η) overwide pseudorapidity range are 
measured using Forward multiplicity Detector (FMD) and TPC

-3.4 -1.7 -0.8 0.8 1.7 5.1

FMD3 TPC FMD1,2

Forwardbackward



Long-range two-particle correlations

• No significant “ridge” is observed in the 60–100% event class. 

32

-3.4 -1.7 -0.8 0.8 1.7 5.1

FMD3 TPC FMD1,2



Long-range two-particle correlations

• The significant near-side ridge structure is observed in 0–5% p–Pb 
collisions

33

-3.4 -1.7 -0.8 0.8 1.7 5.1

FMD3 TPC FMD1,2



Non-flow subtraction

• To estimate and subtract the non-flow effects due to dijet, the template fit 
procedure is employed. (ATLAS, PRL 116 (2016) 172301)

𝑌temp ∆𝜑 = 𝐹𝑌peri ∆𝜑 + 𝐺 1 + 2෍

𝑛=2

3

𝑉𝑛,𝑛 cos 𝑛Δ𝜑



Extraction v2(η): 3x2PC 35

𝑣2 𝜂𝑎 =
𝑉2,2 𝜂𝑎 , 𝜂𝑏 𝑉2,2(𝜂𝑎 , 𝜂𝑐)

𝑉2,2(𝜂𝑏 , 𝜂𝑐)

-3.4 -1.7 -0.8 0.8 1.7 5.1

FMD3 TPC FMD1,2

v2(η) at -3.4<η<5.1

Forwardbackward

• v2 at a certain η is extracted  by assuming factorization, 𝑉2,2 𝜂𝑎 , 𝜂𝑏 = 𝑣2 𝜂𝑎 𝑣2 𝜂𝑏 , 
using TPC–FMD1,2, TPC–FMD3, and FMD1,2–FMD3 



v2(η) in p–Pb

• Non-zero v2 is observed over a 
wide pseudorapidity range in 
p–Pb collisions up to 40%

• Significant pseudorapidity 
dependence

• The centrality dependence is 
smaller in the p direction than 
in the Pb direction. 

• v2 in the Pb-going direction 
(positive η) is larger than in the 
p-going direction (negative η). 



Comparison with peripheral Pb–Pb

• v2 in 0-5% p–Pb central events is 
comparable with v2 in peripheral 
Pb–Pb collisions, where the 
multiplicities at forward η are 
comparable. (dN/dη~60)

• v2{2} in Pb–Pb at √sNN = 2.76 TeV 
is extracted by the standard Q-
cumulant method with non-flow 
subtraction using pp collisions.

  (PLB 762 (2016) 376)



Comparisons with hydrodynamic model

• v2 results are compared to the 
hydrodynamical calculations.

  (W. Zhao et al., PRL 129 
(2022) 252302)

• 3D Glauber as initial condition + 
viscous hydrodynamics based on 
MUSIC + UrQMD

• The hydrodynamic model 
describes the data qualitatively 
up to 40 %.

• In the model, v2 mainly originates 
from the 3D initial geometry and 
develops over the course of the 
hydrodynamical evolution. 

JHEP 01 (2024) 199



Summary 

• QGP is a state in which quarks and gluons are released from confinement.

• Heavy Ion collision experiment is a unique opportunity to study 
properties of QGP

•  Flow is one of key measurements to study property of QGP

• In heavy ion collisions, large v2 is observed and the hydrodynamic model 
calculation describes the data very well

• QGP created in HIC is like ideal fluid

• Collectivity is observed in high-multiplicity small collision system
• Reflects the initial shape

• Ridge exists up to Δη~8

• Non-zero v2 over wide rapidity range

• Hydrodynamic model describes the data very well.



My plan at sPHENIX

• My first interest is measuring charmed hadrons in p–Au collisions, 
however it was canceled.

• For now, I will measure two particle correlation in pp collisions and 
pT differential flow at midrapidity.

• Subdetectors for the analysis: silicon(+EMCAL) tracking and sEPD

• Middle-term goals:

• System size dependence: Au–Au (and p–Au??)

I look forward to working with you!



Back up



ALICE Experiment

• Inner Tracking System (ITS) and 
Time Projection Chamber (TPC)

• Charged-particle tracking
• |η|<0.8

• Forward Multiplicity 
Detector(FMD)

• FMD3：-3.4<η<-1.7
• FMD1,2: 1.7<η<5.1
• Segmentation in (Δη,Δφ)=(0.05,π/20)
• Charged-particle counter

• V0 Detector
• Trigger and centrality determination
• V0C: -3.7<η<-1.7, V0A: 2.8<η<5.1 

42

~500 M events with MB trigger 

in p–Pb at 5.02 TeV 

Long-range correlations up to Δη~8 and v2(η) at -3.4<η<5.1

-3.4 -1.7 -0.8 0.8 1.7 5.1

FMD3 TPC FMD1,2



• The onset of collective motion is performed in increasingly smaller 
collision systems such as γ+A and e+e.

• A finite v2  has also been observed in γ+A and the non-zero ridge 
yield is observed in 

Study onset of Collectivity



Elementary particles

• Quarks are elementary particles that are the smallest building blocks of 
matter.

• Quarks is confined within hadrons such as mesons and baryons and 
gluons intermediate the strong interaction.

3 quark: Baryon 2 quark: meson 

~170 types ~210 types

Proton Neutron Pion

>3 quark: Exotic hadron 



Azimuthal Anisotropy of emitted particles

𝐸
𝑑3𝑁

𝑑3 റ𝑝
=

1

2𝜋

𝑑𝑁

𝑝𝑇𝑑𝑦𝑑𝑝𝑡
෍

𝑛=0

2𝑣𝑛 cos 𝑛𝜑

•  Fourier expansion of azimuthal distributions for emitted particles

n=1 Directed flow v1 n=2 Elliptic flow v2
n=3 Triangle flow v3

𝑣𝑛 : Flow harmonics



Quark Confinement

• The dynamics of quarks and gluons is 
described by the Quantum 
Chromodynamics (QCD).

• The force between quarks does not 
weaken even as the distance increases.



Variables sa

• sa
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