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Introduction of QGP physics



Elementary particles

* Quarks are elementary particles that are the smallest building blocks
of matter.
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Quark Confinement

* Quarks is confined within hadrons 3 quark: Baryon 2 quark: meson

such as mesons and baryons. .

Pion

* The dynamics of quarks and gluons
Is described by the Quantum
Chromodynamics (QCD).

» The force between quarks does not
weaken even as the distance
Increases QED

»Quarks cannot be isolated
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Asymptotic freedom
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QCD matter

¢ Early Universe The Phases of QCD
LHC Experiments °

} _ RHIC Experiments

* In high temperature and high
density, Quark-Gluon Plasma (QGP),
where quarks and gluons move
freely, is realized.

Temperature

* Ea rIy Universe Quark-Gluon Plasma
» The lattice QCD predicts the critical — [.E Future FAIR/NICA
temperature is 150-200 MeV. | Tl penmens
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Introduction of high-energy
heavy ion collision experiments



Heavy lon Collision Experiments

* Heavy nuclel, such as gold or Vsnn (GeV)

lead, are accelerated to near the 1000
speed of light and collided with
each other to create QGP.

= Unique opportunity to study 100
QGP experimentally.
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Time evolution of heavy ion collisions

Heavy ion collisions involve various physics processes, not just QGP.
1. Before collision

2. Initial stage of the collision

3. QGP
4. Hadronization




Probes to study properties of QGP

Transparent Probe Collective behavior

Impurity Probe
Photon and lepton Flow

Jet and Heavy Flavor

4 AuAu Min. Bias x10°

*  AuAu 0-20% x10°
=  AuAu 20-40% x10

v p+p

== Turbide et al. PRC69

E’N/dp’(GeV2c?) or Ed’c/dp® (mb GeV3c?)

P, (GeV/c)



Kinematics variables of experimental observables

« Experimentally, particles after hadronization are measured.
* Transverse momentum: Pr = \/Px T Dy

« Azimuthal angle: @

* Pseudorapidity: n = L n PPy




Collision Geometry

5 4 2 0 <b(fm)>

* Collision geometry is characterized by §
Impact parameter b, which is the
distance between nucleus.

b can not be directly measured.

 Centrality is used instead, which is
calculated from particle multiplicity,
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Flow in heavy-ion collisions



Initial geometrical anisotropy

 The over
 Anisotro

apped area In semi central collisions is almond shape.
oy in coordinate space is transferred to anisotropy in

anisotropy depending on the whether the mean free path A is longer or

shorter t

nan the size of the system R.
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Two-particle correlation

* The measurement of two-particle correlation is useful to explore
particle production mechanism

* Flow harmonics
» Two-particle correlation is measured as a function of An and Ag




Two-particle correlation

* The measurement of two-particle correlation is useful to explore
particle production mechanism

* Flow harmonics
« Two-particle correlation is measured as a function of An and Ag
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Ridge

* Associated yield per the number of trigger particles:
1 d*N
Ntrig dAT]dA(p

Y(An, Ap) =

(a) CMS PbPb |s,, = 2.76 TeV, 220 < Nji'™ < 260

CMS pp Vs =13 TeV
offline

10 <NJ; ™ <20

1< p'T"g, pI™* <3 GeV/c

ht-ht 1<p;°<3GeVic
1< p”T“"“ <3 GeVic
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Extract Flow Harmonics

e Fit the distribution with Fourier function

Y(Ap) =1+ 2
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vn vs Centrality in Heavy lon Collisions

* v, strongly depends on centrality 0.14
* v, reflects the initial shape of the 612 |
collision geometry. ol
* Higher order terms come from 8 ooal

fluctuations. o
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* Hydrodynamic model describes
the data with small n/s.

C.Gale, et. al, PRL 110, 012302 (2013)

ALICE data v {2}, pr>0.2 GeV
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Longitudinal dynamics

* The system also expand into the longitudinal
direction.

* The pseudorapidity dependence of flow is sensitive

to transport properties such as temperature
dependent of n/s and hadronic viscosity
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Flow in Small System



Small Collision System

- - -

dense system
many interactions

low multiplicity - | high multiplicity

« Small system refers to proton-proton and proton-nucleus collisions.

* QGP was considered not to be produced in small collision system:s.
« Small system is conducted as reference experiments for larger collision systems



Hint of QGP in small system

PLB 724, 213 (2013) PLB 765, 193-220 (2017)
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* The ridge Is also observed in high-multiplicity pp and p—Pb collisions at
the LHC.

 Hint of collectivity in small collision system. QGP is created in small system?



Geometry Scan

» Several small collision systems were performed at RHIC.
Nature Phys. 15, 214-220 (2019)
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Vv, Vs collision geometry
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The origin of collectivity in small system

* As the multiplicity decreases, the contribution of initial momentum
anisotropy might be greater than that of geometrical anisotropy.

Obse rved Vn Initial state Non-equilibrium Hydrodynamic
A regime regime regime

¥

initial state
= correlations

bt | 4

— esponse to
initial geometry

contributions to
azimuthal correlations vn

>

Event multiplicity (dNch/dn)



Comparisons with initial model

Nature Phys. 15, 214-220 (2019), PRL 123, 039901 (2019)
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* The initial state model fails to reproduce v,(p7): It
underestimates v, and overestimates v;.

 Gluons generated by CGC are fragmented using strings.



Comparisons with hydro model
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* The hydrodynamic model reproduces the data well

»Interaction in the final state is essential to reproduce v,



Longitudinal dynamics in pA collisions

* pPb collision is asymmetric

dNeh/dnap

 Larger multiplicity at forward thank at backward

* Long-range correlation and v2(n) overwide pseudorapidity range are
measured using Forward multiplicity Detector (FMD) and TPC
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Long-range two-particle correlations

FMD1,2

TPC

FMD3

5.1

—>

—

1

(pes)

& vplevp™' N
Np b

o0sse

)

évplvp™'N

00sse

Np b

)

& vplevp™' N

00sse

Np

* No significant “ridge” is observed in the 60—-100% event class.



Long-range two-particle correlations

FMD3
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* The significant near-side ridge structure is observed in 0-5% p—-Pb

collisions
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Non-flow subtraction

 To estimate and subtract the non-flow effects due to dijet, the template fit
procedure is employed. (ATLAS, PRL 116 (2016) 172301)
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Extraction v,(n): 3x2PC

* v, at a certain n is extracted by assuming factorization, V,,(nq,np) = v2(ma)v2(1p),
using TPC-FMD1,2, TPC-FMD3, and FMD1,2-FMD3

” (T] ) _ VZ,Z (na: nb)VZ,Z (na' T]C) Vz(n) at _3.4<n<5.1
S V2,2, 1)

N
backward Forward
O —
FMD3 TPC FMD1,2

-3.4 -1.7 -0.8 0.8 1.7 5.1
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v,(n) in p—Pb

* Non-zero v, is observed over a
wide pseudorapidity range in
p—Pb collisions up to 40%

* Significant pseudorapidity
dependence

* The centrality dependence is
smaller in the p direction than
in the Pb  direction.

* v, Iin the Pb-going direction
(positive n) is larger than in the
p-going direction (negative n).
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Comparison with peripheral Pb-Pb

* v, In 0-5% p—Pb central events is
comparable with v, in peripheral
Pb—Pb collisions, where the
multiplicities at forward n are
comparable. (dN/dn~60)

* v,{2} in Pb—Pb at Vsyy = 2.76 TeV &
Is extracted by the standard Q-
cumulant method with non-flow
subtraction using pp collisions.

(PLB 762 (2016) 37/6)
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o vi{2,QC} 60-70% (VOM) Pb—Pb \ISNN =2.76 TeV

O v§™(2,QC} 70-80% (VOM) Pb-Pb s, = 2.76 TeV
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Comparisons with hydrodynamic model

* V, results are compared to the

hydrodynamical calculations.

(W. Zhao et al., PRL 129
(2022) 252302)

« 3D Glauber as initial condition +
viscous hydrodynamics based on

MUSIC + UrQMD
* The hydrodynamic model

describes the data qualitatively

up to 40 %.

 In the model, v, mainly originates
from the 3D initial geometry and
develops over the course of the
hydrodynamical evolution.
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Summary

* QGP is a state in which quarks and gluons are released from confinement.

* Heavy lon collision experiment is a unique opportunity to study
properties of QGP

* Flow is one of key measurements to study property of QGP

* In heavy ion collisions, large v2 is observed and the hydrodynamic model
calculation describes the data very well

 QGP created in HIC is like ideal fluid

* Collectivity is observed in high-multiplicity small collision system
 Reflects the initial shape
* Ridge exists up to An~8
* Non-zero v2 over wide rapidity range
* Hydrodynamic model describes the data very well.



My plan at sSPHENIX

* My first interest is measuring charmed hadrons in p—Au collisions,
nowever it was canceled.

* For now, | will measure two particle correlation in pp collisions and
0r differential flow at midrapidity.
 Subdetectors for the analysis: silicon(+ EMCAL) tracking and sEPD
» Middle-term goals:

 System size dependence: Au—Au (and p—Au??)

&3¢
HFRELEFT
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(@)o) | look forward to working with you!



Back up



ALICE Experiment

42

* Inner Tracking System (ITS) and
Time Projection Chamber (TPC)

« Charged-particle tracking
* |n|<0.8
* Forward Multiplicity
Detector(FMDf
* FMD3 ' -3.4<n<-1.7
« FMD1,2: 1.7<n<5.1
« Segmentation in (An,A¢g)=(0.05,11/20)
» Charged-particle counter

VO Detector

 Trigger and centrality determination
* VOC: -3.7<n<-1.7, VOA: 2.8<n<5.1

~500 M events with MB trigger
in p—Pb at 5.02 TeV

Long-range correlations up to An~8 and v,(n) at -3.4<n<5.1



Study onset of Collectivity

* The onset of collective motion is performed in increasingly smaller
collision systems such as y+A and e+e.

* A finite v2 has also been observed in y+A and the non-zero ridge
yield is observed in



Elementary particles

* Quarks are elementary particles that are the smallest building blocks of
matter.

* Quarks is confined within hadrons such as mesons and baryons and
gluons intermediate the strong interaction.

. \'

3 quark: Baryon 2 quark: meson

Proton  Neutron Pion
_— >3 quark: Exotic hadron ‘

(6 types of quarks: up, down,
charm, strange, top and bottom)



Azimuthal Anisotropy of emitted particles

* Fourier expansion of azimuthal distributions for emitted particles

d’N 1
E d3p ZﬂPTdydPt z 2V COS Y U : Flow harmonics
n=1 Directed flow v, n=2 Elliptic flow v, n=3 Triangle flow v,

~l
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Quark Confinement

» The dynamics of quarks and gluons is
described by the Quantum
Chromodynamics (QCD).

* The force between quarks does not
weaken even as the distance increases.

distance

distance

' old
energy old energy new
energy
n ery meson new
PO rrunted e
meson
old




Variables sa

®* Sd

n = -n(tan(6/2))
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