Reaction Plane Resolution

2023/11/29 INTT Workshop in KU NWU M2 Manami Fujiwara

Analysis Plan during INTT workshop

Name: Manami Fujiwara

Institution: NWU

- Analysis topic

Analyze v2 INTT reaction plane with MBD phi

- Current knowledge/status of this topic

Calibrated INTT reaction plane were calculated INTT reaction plane resolution with 2sub - method was calculated

Goal for the workshop

- 1. Calculate v2 using 1M event in run54280
- 2. Confirm correlation v2 and resolution with number of intt cluster
- 3. Make document, how to get Mbd data from DST

Milestones to reach to your goal

- 1. Get Mbd phi information from DST and add to my ttree for analysis
- 2. Write code for v2 calculation
- 3. Add function divide by the number of cluster to flattening code and v2 code

Analysis Plan during INTT workshop

Name: Manami Fujiwara

Institution: NWU

Analysis topic

Analyze v2 INTT reaction plane with MBD phi

- Current knowledge/status of this topic

Calibrated INTT reaction plane were calculated INTT reaction plane resolution with 2sub - method was calculated

Goal for the workshop

- 1. Calculate v2 using 1M event in run54280
- 2. Confirm correlation v2 and resolution with number of intt cluster
- 3. Make document, how to get Mbd data from DST

Milestones to reach to your goal

- 1. Get Mbd phi information from DST and add to my ttree for analysis
- 2. Write code for v2 calculation
- 3. Add function divide by the number of cluster to flattening code and v2 code

Run and Cut condition

- Run54280
 - Zero field
 - Number of Event: First 1M events (Run54280 has 10M events.)
- Cut Condition
 - Hot Channel (produced by Jeain)
 - BCO Timing
 - |MBD z vertex| < 20
 - INTT Cluster ADC > 45

INTT reaction plane resolution

- Calculate the resolution using 2sub-method
 - Suppose that $\sigma_{INTTS} = \sigma_{INTTN}$, the resolution is

•
$$\sigma_{INTT} = \sqrt{\sigma_{INTTS}^2 + \sigma_{INTTN}^2} = \sqrt{2\langle\cos 2(\psi_{INTTS} - \psi_{INTTN})\rangle}$$

- $\sigma_{INTT} = 0.696062$ (using 1M event)
- Compare with sEPD event plane resolution, it is higher than the maximum of sEPD resolution

sEPD Total Charge vs sEPD event plane resolution by ejiro https://docs.google.com/document/d/ hNYyXgFVp3XaeHl82aTlv55webko-ZO5qKOok26zclk/edit?tab=t.o

INTT reaction plane resolution

- X axis: number of INTT Cluster
- Y axis: INTT RP Resolution
- X error : range of number of cluster
- Y error : sigma of mean
- $\sigma_{INTT} = \sqrt{\sigma_{INTTS}^2 + \sigma_{INTTN}^2} = \sqrt{2\langle\cos 2(\psi_{INTTS} \psi_{INTTN})\rangle}$

• INTT RP resolution is higher than sEPD RP resolution

NClus vs v2

•
$$v_2^{measure} = \langle \cos(2[\psi_{INTT} - \phi_{MBD}]) \rangle$$

$$v_2^{ture} = \frac{v_2^{measure}}{\sigma_{INTT}}$$

NClus vs v2

- Confirm correlation with number of cluster and INTT reaction plane resolution
- INTT reaction plane resolution is higher than sEPD resolution
- INTT reaction plane resolution contains auto correlation made by 2-sub method
- 3-sub method (using 3 detector, for example, INTT, MBD south and MBD north) is better
- v2 is close to 0
- I need to debag more

Next to do

• Debag the code and calcurate correlation with v2 and number of cluster again

ClusterPhiSize Analysis

Back Up

Hydrodynamic behavior of QGP and azimuthal anisotropy of particles (v_2)

$$\frac{dN}{d(\phi - \psi_2)} \propto 1 + 2v_2 \cos[2(\phi - \psi_2)]$$

 ϕ : Azimuthal angle of the particles produced by the collision

 ψ_2 : reaction plane angle

 v_2 : value representing the strength of the azimuthal anisotropy

QGP is generated \rightarrow large v_2 is measured

Reaction plane

- Reaction plane is a plane includes the straight line connecting the center of nucleus and and z axis
- Reaction plane is not controlled, so distribution of reaction plane angle should be uniform distribution
 - → Reaction plane angle distribution is distorted due to the effect of detector acceptance, beam doesn't throw center of detector
 - → Calibrations to fix the effects(re-centering, flattening) are needed

Definition of Reaction plane

•
$$\phi = \arctan\left(\frac{y}{x}\right)$$

$$Q_x^{obs} = \frac{\sum_i \omega_i \cos(n\phi)}{\sum_i \omega_i}, \ Q_y^{obs} = \frac{\sum_i \omega_i \sin(n\phi)}{\sum_i \omega_i}$$

$$\bullet \ \psi_n = \frac{1}{n} \tan^{-1} \frac{Qx}{Qy}$$

Analysis in the case of n=2, $\omega_i = 1$ using coordinates of INTT cluster

Reaction plane angle ψ is the angle between the reaction plane and the xy-plane.

The reaction plane is a plane that includes the straight line connecting the centers of the nuclei and the beam axis.

Recentering calibration

- Recentering calibration revises the effect which made by beam doesn't throw center of detector
- Q_x^{rec} and Q_y^{rec} are defined by following equation using observed $Q_{x,y}$ and $\sigma_{x,y}$

$$Q_x^{rec} = \frac{Q_x^{obs} - \langle Q_x^{obs} \rangle}{\sigma_x^{obs}}, \ Q_y^{rec} = \frac{Q_y^{obs} - \langle Q_y^{obs} \rangle}{\sigma_y^{obs}}$$

$$\bullet \ \psi_2^{re-cent} = \frac{1}{2} \tan^{-1} \frac{Q_x^{rec}}{Q_y^{rec}}$$

Flattening

• Flattening calibration revises $\Delta \psi$, the distortion in ψ_{rec} distribution, by fitting with a Fourier expansion. It makes ψ_{rec} distribution flat

$$\bullet \ \psi^{flat} = \psi^{rec} + \Delta \psi$$

$$\bullet A_k = -\frac{2}{k} \langle \sin 2k\psi^{rec} \rangle$$

$$\bullet \ B_k = \frac{2}{k} \langle \cos 2k \psi^{rec} \rangle$$

- Left : Before recentering
- Right : After recentering
- The circle in plot is made by high multiplicity events

•
$$Q_x^{obs} = \langle \cos(2\phi) \rangle$$
,

•
$$Q_y^{obs} = \langle \sin(2\phi) \rangle$$

$$\bullet \ Q_x^{rec} = \frac{Q_x^{obs} - \langle Q_x^{obs} \rangle}{\sigma_x},$$

$$Q_y^{obs} - \langle Q_y^{obs} \rangle$$

$$Q_y^{rec} = \frac{Q_y^{obs} - \langle Q_y^{obs} \rangle}{\sigma_y}$$

All INTT

• Black: raw ψ_2

• Red : After recentering ψ_2

• Blue : After flattening ψ_2

$$\bullet \ \psi^{flat} = \psi^{rec} + \Delta \psi$$

$$\bullet \frac{\Delta \psi}{2} = \sum_{k=1}^{8} \left(A_k \cos 2k \psi^{rec} + B_k \sin 2k \psi^{rec} \right)$$

INTT south

Using INTT cluster in south

• Black : raw ψ_2

• Red : After recentering ψ_2

• Blue : After flattening ψ_2

$$\Phi \psi^{flat} = \psi^{rec} + \Delta \psi$$

INTT north

• Using INTT cluster in north

• Black : raw ψ_2

• Red : After recentering ψ_2

• Blue : After flattening ψ_2

$$\bullet \ \psi^{flat} = \psi^{rec} + \Delta \psi$$

$$\bullet \frac{\Delta \psi}{2} = \sum_{k=1}^{8} \left(A_k \cos 2k \psi^{rec} + B_k \sin 2k \psi^{rec} \right)$$

Run54280

• Q vector in south

Run54280

• Q vector in north

Run54280

• MBD z vertex was spread to compare with run2023.

