Performance Study of the single electron tracking with INTT + EMCal

RIKEN Takuya Kumaoka

Achievement

- How to run the physics simulation in Fun4All
- How to imprement the detectors in the simulation
- How to lean to use the Condor
- I made a very rough code to reconstruct single electron

Motivation

Improve electron tracking using INTT by adding calorimeters

There is possibility TPC detector do not work well.

- → By adding calorimeter hit point, the tracking quality is expected to improve.
- <Final goal> Impove the E/p and reconstruct J/ ψ
- <Short term goal>
- (1) Estimate the correlation $p_{\rm T, \, e^{-}}$ and how shift by magnetic field.
- (2) Using the INTT and EMCal hit points, we estimate $p_{\text{T, e-}}$ and it's resolution $(\delta p_{\text{T}} = p_{\text{T, reco}} p_{\text{T, truth}})$

Methods

Framework: Fun4all

Simulation: Single particle gun + GEANT4

Inject electron p_T : 0.5, 1, 2, 5 GeV/c

Inject range: ϕ : $-\pi$ to π , η : -1 to 1

GEANT4 Setting: Magnet 1.4 T (1.4*1.4 T) (not flat: However, I still do not check the detail)

Detector: MVTX, INTT, TPC, EMCal, iHCal, oHCal

Estimate track p_T using the Sagitta equation

Sagitta p_T equation

$$p_{\mathrm{T}}[\mathrm{GeV}] = qBR$$

= $0.3B[T]R[m]$

Fitting the circle equation $(y = \sqrt{R^2 - (x - x_s)^2} + y_s^2)$ for the three points (inner INTT, outer INTT, and EMCal) and estimate the R.

Using this R, the p_T can be calculated.

Hit Matching Algorithm

- (1) Find a inner INTT cluster having the closest $\phi_{
 m outer\,INTT}$
- (2) Caclulate $d\phi/dr$ (outer INTT inner INTT)
- (3) Searching for an EMCal cluster having the highest

energy in the ϕ_{Cal} range

+ 10° (~0.17 rad)

target

5° (~ 0.087 rad)

(3)

INTT

Calorimeter Deposit Energy Dispartion

Check the criteria to use a tower having the highest energy

- Electron deposits its most energy in a tower (not much dispersed).
- → It seems well to use only the highest energy tower, temporally.
- (?1) There is a weird point.
- (?2) The energy of iHCal is smaller than oHCal.

p_{T} resolution

iINTT+oINTT+EMCal

Vertex+iINTT+oINTT+EMCal

MVTX+iINTT+oINTT+EMCal

 $\delta p_{\rm T}=~p_{\rm T,reco}~-p_{\rm T,truth},~p_{\rm T,reco}$ = 0.3*1.4*1.4* $R_{\rm sagitta}$, (I misstook the magnetic field)

→ Have to check the reason of the peak shift.

Vertex Estimation

The distribution width is still so large. I have to improve it.

Outlook

- Have to check some weird points of my results.
- Re-make simulation in the correct magnetic filed (1.4*1.4 T -> 1.4 T)
- Increase p_T range of single electrons (p_T = 0.5, 1, 2, 5 GeV/c)
- Check what does the calorimeter tower making and clustering do
- Check that it work in PYTHIA simulation (tracking efficiency, p_T resolution)
- Make event displays

(<1> vertex + inner INTT + outer INTT (to compare with the NWU results))

Understand the Way to Make a Calorimeter's Tower/Cluster

Clastering way and the postion is very sensitive for the $p_{\rm T}$ estimation.

→ Need to modify clustering or shift position.

Backup Slides

