INTT Seeding Tracking Performance Study

RIKEN Takuya Kumaoka

Contraction T.Kumaoka

1 /34 🔊

My Study Informations

Study Wiki Page:

https://wiki.sphenix.bnl.gov/index.php?title=INTT AnalysisWorkshop2024 TakuyaKumaoka

Git link of this study:

- Particle Generation Simulation Codes
- InttSeedTrackPerformance/src/InttSeedTracking.cxx

- INTT Seed Tracking Performance Estimation Codes - It will be explained in this slides of the result part

https://github.com/sPHENIX-Collaboration/INTT/blob/main/general_codes/tkumaoka/InttSeedingTrackDev/ InttSeedTrackPerformance/src/InttSeedTrackPerformance.cxx

How to run this study codes

https://indico.bnl.gov/event/24622/contributions/99967/attachments/58840/101806/2024Dec16 Kumaoka HowToRunMyCode.pdf

https://github.com/sPHENIX-Collaboration/INTT/tree/main/general_codes/tkumaoka/InttSeedingTrackDev/ParticleGen

- INTT Seed Tracking Codes
It will be explained in this slides of the algorithm part https://github.com/sPHENIX-Collaboration/INTT/blob/main/general_codes/tkumaoka/InttSeedingTrackDev/

Aim of my study

Improve electron tracking using INTT + calorimeters

calorimeter hits and show the potential of this tracking without TPC.

We expect the $p_{\rm T}$ can be described by a magnetic shift angle ($d\phi$) equation. The coefficients (C_1 and C_2) is estimated using single electron simulation. \rightarrow The function performance is evaluated by: $p_{\mathrm{T,reco}} - p_{\mathrm{T,truth}}$

 $p_{\mathrm{T,reco}}$

Contraction T.Kumaoka

- \rightarrow By adding calorimeter hit point, the tracking quality is expected to improve.
- < My study goal> Evaluate how much the p_T resolution improve by including the

Background And Final Goal

- The RHIC-sPHENIX has a TPC detector to identify the charged particles. → However, TPC is very difficult detector to operate.
- Current situation of tracking in sPHENIX - TPC calibration will need much time to show physics.
- There are data without TPC.
- Streaming read-out data includes events that happen outside the TPC acceptance range.
- On the other hand, the tracking with the only MVTX+INTT seems difficult to identify electrons to get hadrons decaying into electrons with sufficient statistics.

We expect that adding **calorimeter** information into the MVTX+INTT tracking will show enough PID performance.

4 /34 🕟

Short Results

Contraction T.Kumaoka

track.

On the other hand, this result still does not include calibrated EMCal position. Therefore, it indicates the possibility to achieve the 1-2 percents p_{T} resolution!

2025/01/01 Meeting @ Online 🖇

(1) The result could show the track w/ EMCal has better p_{T} resolution than only INTT

INTT Seeding Algorithm

§ 2025/01/01 Meeting @ Online \$

INTT + EMcal Hit Matching Algorithm

(2) Caclulate $d\phi/dr$ (outer INTT - inner INTT) < <u>TempCalcdPhidR</u>> (3) Searching for an EMCal cluster (> 0.1 MeV) having the highest energy in the ϕ_{Cal} range ϕ_{INTT} - 5° < ϕ_{Cal} < ϕ_{INTT} + $d\phi_{\text{Cal}}$ + 10° $d\phi_{\text{Cal}} = d\phi/dr * (R_{\text{EMCal}} - R_{\text{INTT}}) < \text{TempInttCalMatch} >$

Contraction T.Kumaoka

2025/01/01Meeting @ Online 🖇

MVTX Hit Matching Algorithm

(1) Draw a circle using three hit points (iINTT + oINTT + EMcal) (a) No fit approach (The last page result) (b) Use ROOT fit <<u>SagittaRByCircleFit</u>> <<u>RoughEstiSagittaCenter3Point</u>> $(y = \sqrt{R^2 - (x - x_c)^2 - y_c})$

(2) Select Closest Points of MVTX <<u>AddMvtxHits</u>>

 (x_c, y_c)

2025/01/01Meeting @ Online 🖇

p_T calculation way1

Sagitta p_T equation $p_{\rm T}[{\rm GeV}] = qBR$ = 0.3B[T]R[m]

Fitting the circle equation $(y = \sqrt{R^2 - (x - x_s)^2 + y_s^2})$ for the three points (inner INTT, outer INTT, and EMCal) and estimate the R.

Using this R, the p_T can be calculated.

2025/01/01Meeting @ Online 🖇

9 /34 🔊

Acculate $p_{\rm T}$ Estimation Idea

We expect the $p_{\rm T}$ can be described by a magnetic shift length (L) equation.

Now, I am estimating the coefficients (C_1 and C_2) using single electron simulation. \rightarrow I need to estimate the function performance. $p_{\rm T,reco} - p_{\rm T,truth}$

 $p_{\mathrm{T,reco}}$

Contraction T.Kumaoka

- We do not know the truth emission direction.

Vertex Determination

x, y position: <<u>CrossLineCircle</u>> The cross point of the circle drown by the hits connection and the line between the (0, 0) and the center of circle.

z position:

The cross point of the line drown by the hits and the horizontal line.

y (

11 /34 **•••**

Tracking Performance Results

\$2025/01/01 Meeting @ Online \$

Input Event File

Simulation: Single particle gun + GEANT4 → output: DST file format

- Output Contents <<u>some container info</u>>
 - Truth Info <>

 - Calorimeter cluster <<u>RawCluster</u>, <u>container</u>, lines in Fun4All>

Inject electron p_T : 0-10 GeV/c Inject range: ϕ : $-\pi$ to π , η : -1 to 1 GEANT4 Setting: Magnet 1.4 T Detector: MVTX, INTT, TPC, EMCal, iHCal, oHCal

- Tracking detectors cluster <<u>TrkrClusterContainerv4</u>, container, lines in Fun4All>

2025/01/01Meeting @ Online 🖇

sPHENIX Magnetic Field

Document Location

Contraction T.Kumaoka

https://indico.bnl.gov/event/7081/attachments/25527/38284/ sphenix tdr 20190513.pdf

Figure 12. Field Map of the sPHENIX Solenoid

ROOT file Location

/cvmfs/sphenix.sdcc.bnl.gov/calibrations/sphnxpro/cdb/FIELDMAP_GAP/65/ a9/65a930ed6de9c0e049cd0f3ef226e6b4_sphenix3dbigmapxyz_gap_rebuild_v2.root

Different behavior: However, I do not know what is this magnetic field.

η Dependency of the Emission Angle Shift d ϕ by Magnetic Field

There is a possibility that the bending of a track by magnetic field is depends on η . a. The magnetic field is not completely uniform for η . b. Flight length in the higher η region is longer than the smaller η one.

The η dependency seems negligible.

Contraction T.Kumaoka

 \rightarrow Apply the coefficients results into the tracking code. <<u>FitFunctionPt(Double_t dPhi)</u>>

2025/01/01Meeting @ Online 🖇

$p_{\rm T}$ resolution vs $p_{\rm T}$

MVTX+iINTT+oINTT+EMCal ordinal way: $p_{\rm T}[{\rm GeV}] = qBR$

For the pT fluctuation, the fitting function way is clearly better than the ordinal way.

 dp_{T}/p_{T}

10 T.Kumaoka

Fitting Function way: $p_{\rm T} = p0 + \frac{p1}{d\phi} + \frac{p2}{d\phi^2}$

Probably it made by mis-tracking (reco-truth)/truth

2025/01/01Meeting @ Online 🖇

$p_{\rm T}$ resolution with fitting function

The results w/ EMCal has sufficient better resolution than only INTT. On the other hand, there are much room to improve.

\multimap T.Kumaoka

§ 2025/01/01 Meeting @ Online §

(*р*т, reco — *p*т, truth)/*p*т, truth other pT slices (fitting function way)

The resolution becomes worse. However, for the over pT = 5 GeV/c, the resolution keeps.

\multimap T.Kumaoka

2025/01/01 Meeting @ Online 🖇

$d\theta$ (reco - truth)

MVTX+iINTT+oINTT+EMCal

 θ affect to the momentum calculation ($p = p_T / \sin \theta$). It is necessary to improve the quality using more sophisticated algorithm.

dE

The track energy use the EMCal + iHCal + oHCal. Only the HCal cluster which locate on the closest $\phi_{ m EMCal}$ is selected.

ೂ T.Kumaoka

It is necessary to cluster or merge around calorimeter clusters or towers.

2025/01/01Meeting @ Online 🖇

E/p

Contraction T.Kumaoka

iINTT+oINTT+EMCal

S 2025/01/01 Meeting @ Online S

22 /34 🔊

Summary

In this study, to estimate the performances of the track w/ EMCal, I made softwares to rough tracking and estimate its performances.

I could get following results:

(1) The result could show the track w/ EMCal has better p_T resolution than only INTT track.

- On the other hand, this result still does not include calibrated EMCal position. Therefore, it indicates the possibility to achieve the 1-2 percents p_T resolution! (2) The E/P distribution shows a peak around 1.
- studies.
- I will show the remaining tasks in the following slides.

However, this track w/ EMCal could not achieve the 1-2 percents resolution expected.

To achieve the final aim, reconstructing hadrons decaying into electrons, we need more

Remain Tasks

§ 2025/01/01 Meeting @ Online \$

Remanings

- 1. Study the calorimeter clustering algorithm.
- 2. Implement a more sophisticated hit matching algorithm.
- 3. Estimate tracking efficiency.
- 4. Run other particles simulation. (Hadrons)
- 5. Multi-particles simulation (ex: PYTHIA)

2025/01/01 Meeting @ Online 🖇

The problem of Calorimeter Hit Position Calibration

Clastering way and the postion is very sensitive for the $p_{\rm T}$ estimation.

→ Need to modify clustering or shift position.

Calorimeter Clustering code

RawClusterContainer (← Now I am using): https://sphenix-collaboration.github.io/doxygen/d6/d12/classRawClusterContainer.html

RawCluster:

https://sphenix-collaboration.github.io/doxygen/d2/d4e/classRawCluster.html

I think the algorithm making calorimeter cluster is written in the "ClusterBuilder" source codes . However, there are three codes having the name "ClusterBuilder"...

The RawClusterPositionCorrection seems important for tracking... However, I have not yet read it.

> https://github.com/sPHENIX-Collaboration/coresoftware/tree/ 02804b5a691b92395e4aae83726ae2c04979c0e2/offline/packages/CaloReco

2025/01/01 Meeting @ Online 🖇

Compare between EMCal Tower and Cluster

coun

count

Single electron generator simulation injection p_{T} : 0.5-1.5 [GeV/*c*] $\eta = 0, |\phi| < \pi$

Calorimeter Tower ("TOWERINFO_CALIB_CEMC") <TowerInfo>

Calorimeter Cluster ("CLUSTER_CEMC") <RawCluster>

\multimap T.Kumaoka

2025/01/01 Meeting @ Online 🖇

Tracking Fail Events Ratio

Event Ratio (1) Only single INTT Cluster (only iINTT or oINTT): ~7%

(2) Matching fail by the algorithm reason: ~2%

(3) Large p_T tracking: ~8% (by mostly decayed events)

(2) Fail Track Event Display Examples (~20%)

S 2025/01/01 Meeting @ Online S

(3) Large dpT Events Examples (~8%)

Contraction T.Kumaoka

New Tracking Algorithm

17
18
19
20
21
22
23
24
25
26
27
28

// reco way1 // HitMatching(tracks, vFMvtxHits, vSMvtxHits, vTMvtxHits, vIInttHits, v0InttHits, \ vEmcalHits, vIHCalHits, vOHCalHits);

- // for(Int_t iTrk = 0; iTrk < tracks.size(); iTrk++){</pre>
- TrackPropertiesEstimation(tracks.at(iTrk), vFMvtxHits, vSMvtxHits, vTMvtxHits); // }

// reco way2

RecoTracksInttSeed2(tracks, vFMvtxHits, vSMvtxHits, vTMvtxHits, \ vIInttHits, v0InttHits, vEmcalHits, vIHCalHits, v0HCalHits); for(Int_t iTrk = 0; iTrk < tracks.size(); iTrk++){</pre> TrackPropertiesEstimation2(tracks.at(iTrk));

Contraction T.Kumaoka

The reason to make new hit matching algorithm to pick up single INTT events. Such events are $\sim 7\%$.

2025/01/01 Meeting @ Online 🖇

New Tracking Algorithm

1.1 Searching for EMCal hits in the range.

- 1. $\eta_{oINTT} \pi/10 < \eta_{EMCal} < \eta_{oINTT} + \pi/10$
- 2. $\phi_{\text{oINTT}} \pi/10 < \phi_{\text{EMCal}} < \phi_{\text{oINTT}} + \pi/10$
- 3. $E_{\rm EMCal} > 0.1 \,\,{\rm GeV}$

I still not optimize the each value

ೂ T.Kumaoka

2.1 Draw a rough circle using 3 points vertex (0, 0).

- 2.2 Select closest hits for each detector.
- 2.3 Re-fit by a circle using all detector hits.
- 2.4 Estimate χ^2 for the circle.

2.5 Select the best track with minimum χ^2 .

Track requirement: (1) both INTT (iINTT+oINTT) (2) Single INTT + 2 MVTX

Kinds of dPhi vs dPt functions

\multimap T.Kumaoka

2025/01/01 Meeting @ Online 🖇

34 /34 🔊

Estimate Performance in the Mixed Events for MVTX

Contraction T.Kumaoka

