Analysis Plan during INTT workshop

Name : Tomoki Harada Institution : Rikkyo Univ.

- Analysis topic (Write your topic) Half-entry issue
- Current knowledge/status of this topic (What you know/have) Analysis of a beam data from p+p run showed 1.3%(38 chips) half-entries
 - Goal for the workshop (Your goal; Please write down with priority
 1. Estimate the number of chips with half-entries from noise data
 2. Confirm that the half-entries were restored by analyzing the data with different Digital-Control
 3. Identify the parameters to restore each chips

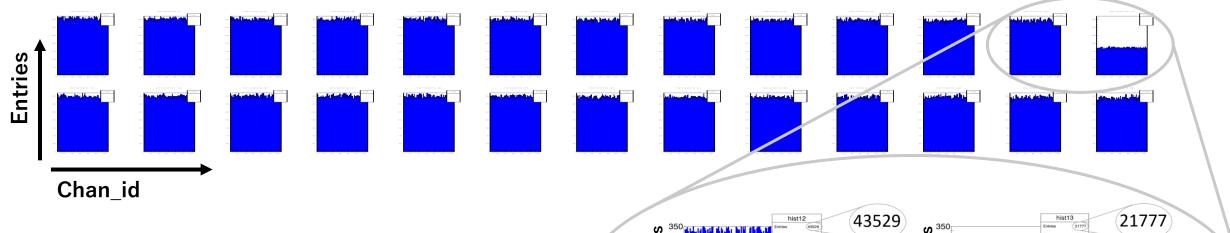
Milestones to reach to your goal

(Write down what you need to learn/study for reaching to your goal)

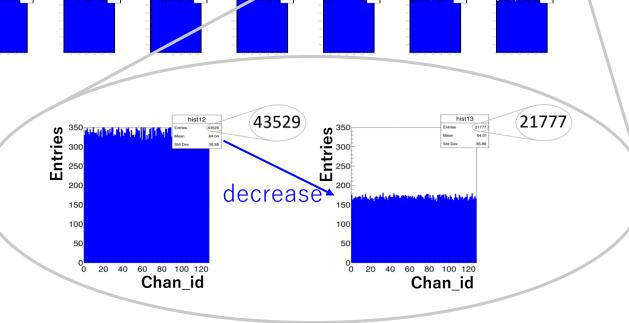
- 1. Learn how to make a root file of the data acquired by INTT actual equipment
- 2. Need to compensate for chip type dependence and layer dependence
- 3. Learn Fun4all to reproduce the result similar to ROOT

Profile \triangleright Date of birth : 05/

- Date of birth : 05/08/2002
- I passed the graduate school exam!



Hobby


- Football, Futsal, Japanese anime and magic
- ➤ Cycling

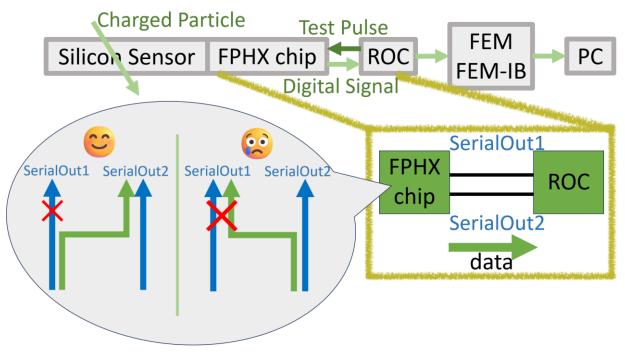
2.In my graduation study

The data from Calibration tests should yield a similar number of entries per chip or channel.

However

Several chips were observed with only half the number of entries detected. We call this the half-entry issue.

2.In my graduation study


- Focus on transfer method
- There are two data output lines from a FPHX-chip to the ROC

Hypothesis

The FPHX-chip is equipped with a feature called Digital-Control, one of which is a mode that clones data and sends them to both output lines.

Result

The number of data on all chips with half-entry at the Riken could be restored to normal.

