RCS Compton Update

Dave Gaskell

Jefferson Lab September 19, 2024

RCS Compton Rates

RCS Compton will use low duty cycle, higher peak power laser (similar to HERMES LPOL) \rightarrow Example system from RPMC lasers: Pulse energy = 30 mJ @ 2 Hz (<P>=60 mW) \rightarrow 8.0E16 photons/pulse

For 15 ns pulses, backscattered photon rate is 240 kHz, "ideal" measurement times on the order of a few seconds

Transverse Analyzing Power and Measurement

$$A_{\rm T} = \frac{2\pi r_o^2 a}{(d\sigma/d\rho)} \cos \phi \left[\rho (1-a) \frac{\sqrt{4a\rho(1-\rho)}}{(1-\rho(1-a))} \right]$$

In contrast to longitudinal measurement, measurement of transverse polarization requires sensitivity to spatial dependence of asymmetry

Fig. 10. (a) Sum and (b) difference distribution positron beam at 3.60 GeV. The resulting v $(2.55 \pm 0.14)\%$.

circular polarization is switched from l a frequency of about 20 Hz by s

Simple rate, measurement time estimates

$$t^{-1} = \mathcal{L}\sigma \left(\frac{\Delta P}{P}\right)^2 P^2 A_{method}^2$$

Average analyzing power: $A^2_{method} = \langle A \rangle^2 \rightarrow$ Average value of asymmetry over acceptance

Energy-weighted: $A_{method}^2 = \left(\frac{\langle EA \rangle}{\langle E \rangle}\right)^2 \rightarrow$ Energy deposited in detector for each helicity state

Differential: $A^2_{method} = \langle A^2 \rangle \rightarrow$ Measurement of asymmetry bin-by-bin vs. energy, etc.

Assuming 80% polarization, $\langle P_{laser} \rangle = 6$ mW, 300 μ m beam spot size..., \rightarrow time for 1% measurement

E _{beam}	A _{avg}	T _{avg}	A _{energy}	T _{energy}	A _{diff}	T _{diff}
5	4.51%	243 s	5.78%	148 s	5.48%	164 s
10	7.79%	92 s	10.15%	54 s	9.56%	61 s
18	11.29%	51 s	14.91%	29 s	13.96%	33 s

Toy Monte Carlo

- Used toy Monte Carlo to look at asymmetries, energy/per bunch etc.
- Generated events for 240 bunches (i.e., 2 minutes of running)
 - For each bunch/crossing, generated number of backscattered photons based on simple luminosity estimates
 - Assumed luminosity 10x smaller than previous slide → 6 mW average laser power
 - 12,000-15,800 backscattered photons/bunch crossing
- Assumed detector 25 m away from laser-beam collision point
 - No realistic simulation of detector just a point in space to look at distributions
- Event generator ignores hourglass effect, assumes all events generated at (0,0)
 → does incorporated finite beam sizes, but only at that point

Detector Distributions

LEP polarimeter measured difference in vertical position for h+ and h- induce by transverse analyzing power

At 5 GeV, average position difference for h+ and his

 $Y_{h+} - Y_{h-} = 0.49 \text{ mm}$

At 18 GeV, difference is similar magnitude:

 $Y_{h+} - Y_{h-} = 0.38 \text{ mm}$

While measurable, this quantity extremely sensitive to knowledge of absolute detector position and laser-beam collision point

5 GeV

Differential Asymmetry measurement

Differential measurement of asymmetry vs. position at detector allows us to incorporate offsets in the fit

Example using Toy MC for counting-mode asymmetry vs. y assuming 0.1 mm segmentation (240 bunches)

→ Requires detector operated in integrating mode (~10,000 photons/bunch) with signal proportional to number of photons in each channel

Differential Asymmetry measurement

Differential measurement of asymmetry vs. position at detector allows us to incorporate offsets in the fit

Example using Toy MC for counting-mode asymmetry vs. y assuming 0.1 mm segmentation (240 bunches)

→ Requires detector operating in integrating mode (~10,000 photons/bunch) with signal proportional to number of photons in each channel

GEANT3 Simulations

Originally assumed a Cherenkov-style detector with number of photoelectrons proportional to number of particles incident on detector
→ Not easy to build such a detector with needed granularity

Switched to diamond detector – record total energy deposited in each strip for a single laser strip

Detector components:

- 1. 1 mm W converter
- 2. 500 strip diamond detector, 1 x 5 cm
- 3. W/ScFI calorimeter (not really relevant here)

Simulation = 100,000 backscattered photons Assuming 10,000 photons/laser pulse = 10 laser pulses

Energy deposited in Photon Detector

Assuming ~10,000 backscattered photons per laser pulse, large amount of energy deposited in photon calorimeter \rightarrow 37 TeV!

Calorimeter response not crucial for RCS polarimeter, but would like to be able to measure absence of a longitudinal asymmetry

Energy Deposited in Diamond Strips

18 GeV

Diamond detectors assumed to be ~0.5 mm, much higher segmentation

→ More modest amount of energy deposited in each strip for a single laser pulse

Even though time response not crucial for this application, could use FLAT-32 ASIC here as well

→ Can choose analog pulse as opposed to discriminated signal (ESR Compton use)

Energy Asymmetry

Transverse polarization will be extracted using asymmetry in energy deposited in each strip

$$A_{strip} = \frac{E_{strip}^+ - E_{strip}^-}{E_{strip}^+ + E_{strip}^-}$$

Since diamond planes are thin, energy deposited roughly the same for all photons

→ Resulting asymmetry similar to that from Cherenkov-type detector

Note: only 10,000 backscattered photons (simulation operator error)

RCS to-do list

- Get realistic beam parameters for RCS laser IP
- Add 5 GeV, 10 GeV
- Perform robust estimates of measurement times using this technique
- Add another plane for measurement of in-plane polarization
- Check sensitivity to residual longitudinal polarization