Vertex reconstruction by INTT in run 23 Au+Au data

Cheng-Wei Shih

National Central University & RIKEN

Sep 4th, 2024 INTT meeting

Overview

- Z reconstructions by INTT
- Analyzed run: 20869, taken on July 8th 2023
- Run condition:
 - Zero-field run
 - Vertex Z distribution off by -20 cm
 - Partition: GL1, EMCal, HCal, INTT, MBD and ZDC
 - ~550k events
- Link to analysis note: Invenio IAN
- Links to the INTT meetings: <u>Aug 21 2024</u>, <u>Aug 28 2024</u>
- Link to the analysis code: <u>GitHub</u>

Goal: seek for the approvals of the <u>data plots</u> of average vertex XY and per-event vertex

Cheng-Wei Shih (NCU, Taiwan)

- Approach 1: Quadrant method
- **Procedures:**
 - 1. Define the searching window
 - 2. In each iteration, try with 4 corners
 - 3. Move searching window to the quadrant that gives better performance
 - 4. Repeat the procedure with the new 4 corners

How to determine the "good" vertex ?

- The one with better **Polynomial 0 fit errors** on both
 - DCA Clu_{inner} ϕ correlation, and
 - $\Delta \phi$ Clu_{inner} ϕ correlation

- Approach 1: Quadrant method
- **Procedures:**
 - 1. Define the searching window
 - 2. In each iteration, try with 4 corners
 - 3. Move searching window to the quadrant that gives better performance
 - 4. Repeat the procedure with the new 4 corners

How to determine the "good" vertex ?

- The one with better **Polynomial 0 fit errors** on both
 - <u>DCA Cluinner</u> ϕ correlation, and
 - $\Delta \phi$ Clu_{inner} ϕ correlation

- Approach 1: Quadrant method
- **Procedures:**
 - 1. Define the searching window
 - 2. In each iteration, try with 4 corners
 - 3. Move searching window to the quadrant that gives better performance
 - 4. Repeat the procedure with the new 4 corners

How to determine the "good" vertex ?

- The one with better **Polynomial 0 fit errors** on both
 - DCA Clu_{inner} ϕ correlation, and
 - $\Delta \phi$ Clu_{inner} ϕ correlation

- Approach 1: Quadrant method
- **Procedures:**
 - 1. Define the searching window
 - 2. In each iteration, try with 4 corners
 - 3. Move searching window to the quadrant that gives better performance
 - 4. Repeat the procedure with the new 4 corners

How to determine the "good" vertex ?

- The one with better **Polynomial 0 fit errors** on both
 - DCA Clu_{inner} ϕ correlation, and
 - $\Delta \phi$ Clu_{inner} ϕ correlation

- Approach 1: Quadrant method
- **Procedures:**
 - 1. Define the searching window
 - 2. In each iteration, try with 4 corners
 - 3. Move searching window to the quadrant that gives better performance
 - 4. Repeat the procedure with the new 4 corners

How to determine the "good" vertex ?

- The one with better **Polynomial 0 fit errors** on both
 - DCA Clu_{inner} ϕ correlation, and
 - $\Delta \phi$ Clu_{inner} ϕ correlation

- Approach 1: Quadrant method
- **Procedures:**
 - 1. Define the searching window
 - 2. In each iteration, try with 4 corners
 - 3. Move searching window to the quadrant that gives better performance
 - 4. Repeat the procedure with the new 4 corners

How to determine the "good" vertex ?

- The one with better **Polynomial 0 fit errors** on both
 - DCA Clu_{inner} ϕ correlation, and
 - $\Delta \phi$ Clu_{inner} ϕ correlation

- Approach 1: Quadrant method
- **Procedures:**
 - 1. Define the searching window
 - 2. In each iteration, try with 4 corners
 - 3. Move searching window to the quadrant that gives better performance
 - 4. Repeat the procedure with the new 4 corners

How to determine the "good" vertex ?

- The one with better **Polynomial 0 fit errors** on both
 - DCA Clu_{inner} ϕ correlation, and
 - $\Delta \phi$ Clu_{inner} ϕ correlation

- Approach 2: Line-filled method
- **Concept:** vertex can be obtained by populating the proto-tracklets into a 2D histogram
- **Procedures:**
 - 1. Define the searching window. Nominally, 3 mm x 3mm, center given by approach 1
 - 2. Fill the trajectories of proto-tracklets with $|\Delta \phi| < 5 \text{ degrees}$
 - 3. Remove the background
 - 4. Take the averages of both axes as the vertex position XY

Demonstration of Line-filled method

If the variation of the vertex is small, the prototracklets can tell the position

- Approach 2: Line-filled method
- **Concept:** vertex can be obtained by populating the proto-tracklets into a 2D histogram
- **Procedures:**
 - 1. Define the searching window. Nominally, 3 mm x 3mm, center given by approach 1
 - 2. Fill the trajectories of proto-tracklets with $|\Delta \phi| < 5$ degrees
 - 3. Remove the background
 - 4. Take the averages of both axes as the vertex position XY

SPHE

Final estimated vertex: (-0.0402 cm, 0.2405 cm)

Final average vertex XY - MC

- Quadrant method + 2D line filled method
 - $20 < selected_NClus < 350$
 - 15k events per data point
 - Take the total average as the final average vertex XY

Avg: {-0.04029 * cm, 0.239851 * cm} Setting: {-0.04 cm, 0.24 cm}

Final average vertex XY - Data

- Quadrant method + 2D line filled method
 - $20 < selected_NClus < 350$
 - 15k events per data point
 - Take the total average as the final average vertex XY

Avg: {-0.0206744 * cm, 0.279965 * cm}

The discrepancy explained in the next page

avg_vtxXY, the discrepancy b/w two methods

The fully understood geometry (MC)

The simulation. Artificially add the offset to each ladder randomly in the offline reconstruction (± 0.25 mm in three dim.)

The shape is expected to be circle, if the geometry is fully understood

INTT meeting

Here shows one of the random trials

The data (offline reco. geometry) by the updated GEANT geometry based on "ladder" survey)

avg_vtxXY, the discrepancy b/w two methods

- Some discrepancies b/w two methods are expected if there are some misalignments

The simulation, but artificially added the offset to each ladder randomly in the offline reconstruction (± 0.25 mm in three dim.)

In terms of the dNdn analysis, the misalignment is planned to be included as one of the sys. uncertainties by having hundred sets of random offsets applied in offline reconstruction of MC. The overall variations can be then obtained

normalize the distribution, and fill it into the fine-segmented 1D histogram

For each combination

Strip in outer barrel

Strip in inner barrel

• For each combination, take into account of the distribution of the possible vertex Z range,

Cheng-Wei Shih (NCU, Taiwan)

normalize the distribution, and fill it into the fine-segmented 1D histogram

For each combination

Strip in outer barrel

Strip in inner barrel

For each combination, the possibility distribution of vertex Z is in the shape of trapezoid

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

• For each combination, take into account of the distribution of the possible vertex Z range,

normalize the distribution, and fill it into the fine-segmented 1D histogram

For each combination

Strip in outer barrel

For each combination, the possibility distribution of vertex Z is in the shape of trapezoid

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

• For each combination, take into account of the distribution of the possible vertex Z range,

normalize the distribution, and fill it into the fine-segmented 1D histogram

For each combination

For each combination, the possibility distribution of vertex Z is in the shape of trapezoid

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

• For each combination, take into account of the distribution of the possible vertex Z range,

normalize the distribution, and fill it into the fine-segmented 1D histogram

For each combination

For each combination, the possibility distribution of vertex Z is in the shape of trapezoid

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

• For each combination, take into account of the distribution of the possible vertex Z range,

normalize the distribution, and fill it into the fine-segmented 1D histogram

For each combination

For each combination, the possibility distribution of vertex Z is in the shape of trapezoid

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

• For each combination, take into account of the distribution of the possible vertex Z range,

normalize the distribution, and fill it into the fine-segmented 1D histogram

For each combination

For each combination, the possibility distribution of vertex Z is in the shape of trapezoid

• For each combination, take into account of the distribution of the possible vertex Z range,

Cheng-Wei Shih (NCU, Taiwan)

normalize the distribution, and fill it into the fine-segmented 1D histogram

For each combination

For each combination, the possibility distribution of vertex Z is in the shape of trapezoid

Cheng-Wei Shih (NCU, Taiwan)

• For each combination, take into account of the distribution of the possible vertex Z range,

normalize the distribution, and fill it into the fine-segmented 1D histogram

For each combination

For each combination, the possibility distribution of vertex Z is in the shape of trapezoid

Cheng-Wei Shih (NCU, Taiwan)

• For each combination, take into account of the distribution of the possible vertex Z range,

normalize the distribution, and fill it into the fine-segmented 1D histogram

For each combination

For each combination, the possibility distribution of vertex Z is in the shape of trapezoid

• For each combination, take into account of the distribution of the possible vertex Z range,

Cheng-Wei Shih (NCU, Taiwan)

normalize the distribution, and fill it into the fine-segmented 1D histogram

For each combination

For each combination, the possibility distribution of vertex Z is in the shape of trapezoid

Cheng-Wei Shih (NCU, Taiwan)

• For each combination, take into account of the distribution of the possible vertex Z range,

normalize the distribution, and fill it into the fine-segmented 1D histogram

For each combination

For each combination, the possibility distribution of vertex Z is in the shape of trapezoid

Cheng-Wei Shih (NCU, Taiwan)

• For each combination, take into account of the distribution of the possible vertex Z range,

normalize the distribution, and fill it into the fine-segmented 1D histogram

For each combination

For each combination, the possibility distribution of vertex Z is in the shape of trapezoid

Cheng-Wei Shih (NCU, Taiwan)

• For each combination, take into account of the distribution of the possible vertex Z range,

normalize the distribution, and fill it into the fine-segmented 1D histogram

For each combination

For each combination, the possibility distribution of vertex Z is in the shape of trapezoid

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

• For each combination, take into account of the distribution of the possible vertex Z range,

normalize the distribution, and fill it into the fine-segmented 1D histogram

For each combination

For each combination, the possibility distribution of vertex Z is in the shape of trapezoid

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

• For each combination, take into account of the distribution of the possible vertex Z range,

Trapezoidal shape for each combination

- Correct the cluster ϕ based on the reconstructed average vertex XY
- Loop over the combinations, and keep the combinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

SPHE

- Correct the cluster ϕ based on the reconstructed average vertex XY
- Loop over the combinations, and keep the combinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

SPHE

- Correct the cluster ϕ based on the reconstructed average vertex XY
- Loop over the combinations, and keep the combinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

SPHE

- Correct the cluster ϕ based on the reconstructed average vertex XY
- Loop over the combinations, and keep the combinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

SPHE

- Correct the cluster ϕ based on the reconstructed average vertex XY
- Loop over the combinations, and keep the combinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

SPHE

- Correct the cluster ϕ based on the reconstructed average vertex XY
- Loop over the combinations, and keep the combinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

INTT meeting

SPHE

Cheng-Wei Shih (NCU, Taiwan)

- Correct the cluster ϕ based on the reconstructed average vertex XY
- Loop over the combinations, and keep the combinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

SPHE

- Correct the cluster ϕ based on the reconstructed average vertex XY
- Loop over the combinations, and keep the combinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

INTT meeting

SPHE

Cheng-Wei Shih (NCU, Taiwan)

- Correct the cluster ϕ based on the reconstructed average vertex XY
- Loop over the combinations, and keep the combinations with $\Delta \phi \leq \phi_{cut}$ and DCA \leq DCA_{cut}
- Move to the Z-radius plane

INTT meeting

SPHE

Cheng-Wei Shih (NCU, Taiwan)

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

Final vertex Z given by average of 7 gaussian fits with the fit ranges of "mean $\pm(0.2 + 0.15 \text{ x i}) \times \text{FWHM}$ "

The vertex distribution quality assurance

20 < Width of fit "gaus func + offset" < 55

INTT meeting

20 < Width of z_range_hist cut < 80

Selections

- Min. Bias event (w/o ZDC requirements)
- $|\Delta \phi|$ of cluster pair ≤ 0.5 degree
- DCA ≤ 0.1 cm
- MBD charge asymmetry requirement
- Vertex distribution quality assurance requirement

Cheng-Wei Shih (NCU, Taiwan)

MC zvtx setting: Gaussian (-20 cm, 5 cm) zvtx rage : -30 cm ~ 0 cm

The higher multiplicity the more accurate vertex Z determined 1.7 mm resolution in the region of number of clusters > 1000

Cheng-Wei Shih (NCU, Taiwan)

INTT meeting

Data

Data

INTT meeting

SPHE

The comparison with MBD reco. vertex Z

The "line" in the correlation plot

Requiring the number of INTT clusters > 1000, the "line" still there

Cheng-Wei Shih (NCU, Taiwan)

INTT meeting

SPHE

The "line" in the correlation plot

Maybe new

MBD charge sum

Just the supplementary not for approval

SPHE

MBD vertex Z (charge sum > 550)

The grass is still there even in the high multiplicity region

More about the vertex Z correlation

multiplicity even only requiring the outliers

Recap, the DATA plots seeking for approval SPHENCE

Data

INTT meeting

Recap, the DATA plots seeking for approval SPHENIX

Data

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

Evt_vtxZ

The wiggling structure due to the fact that the collisions happened near the edge of INTT

INTT meeting

Cheng-Wei Shih (NCU, Taiwan)

SPHE

The optimization of vertex Z determination SPHENIX

- New trial: after having the histograms made of possible vertex Z ranges, use ML (XGBoost) to do the final vertex Z determination
- Training variables: the content of each bin of the histogram post the half-maximum cut (2401 variables currently, corresponding to the number of bins of histogram)
- Total MC events: 80k (75% training, 25% testing)

The optimization of vertex Z determination

The test sample 25% of the total MC events

Reco. vertex Z predicted by training model

INTT meeting

Number of cluster* > 800

Reco. vertex Z by 7 Gaus fittings

The optimization of vertex Z determination

The test sample 20% of the total MC events

INTT meeting

- Reco. vertex Z predicted by training model
- Reco. vertex Z by 7 Gaus fittings

Cheng-Wei Shih (NCU, Taiwan)

Back up

- Approach 1: Quadrant method
- **Procedures:**
 - 1. Define the searching window
 - 2. In each iteration, try with 4 corners
 - 3. Move to the quadrant that gives better performance, and narrow the searching window half
 - 4. Repeat the procedure with the new 4 corners

How to determine the "good" vertex ?

- The one with better Polynomial 0 fit errors on both
 - DCA Clu_{inner} ϕ correlation, and
 - $\Delta \phi$ Clu_{inner} ϕ correlation

Two correlation plots for **each corner**

Inner cluster Φ [radian]

- What quantities are good choices to quantify the performance of the given vertex?
 - If the given vertex is getting closer to the true vertex:
 - DCA inner ϕ and $\Delta \phi$ inner ϕ correlations become flat
 - $\Delta \phi$ 1D distribution becomes concentrated

PolO fit error is more sensitive in the region that the correlation shape is closer to the horizontal line Currently require both fit errors of DCA-inner ϕ and $\Delta \phi$ -inner ϕ have to be better

• Approach 1: Quadrant method

n iteration

The fit error getting smaller in the deeper iteration

Cheng-Wei Shih (NCU, Taiwan)

SPHE

• Approach 1: Quadrant method

Inner cluster Φ [radian]

Cheng-Wei Shih (NCU, Taiwan)

MC set beam spot : -0.04 cm, 0.24 cm Measured beam spot : -0.0405 cm, 0.2402 cm

File directories

- Data file : SDCC:/sphenix/lustre01/sphnxpro/commissioning/INTT/beam/ beam_intt{0..7}-00020869-0000.evt
- production/Sim_Ntuple_HIJING_new_20240424/ntuple_00{000..199}.root

Simulation file: SDCC:/sphenix/user/hjheng/sPHENIXRepo/analysis/dNdEta_Run2023/

