

babyMOSS training at CERN

M. Buckland

ePIC UK WP1 meeting

25/09/2024

Introduction

- Daresbury is involved in the ALICE ITS3 project
- Have contributed to chip testing of the previous prototypes (MLR1)
- Want to continue the knowledge with the next prototypes (ER1)
- Spent 2 weeks at CERN for training on the babyMOSS chip and test system
- Goal was to learn how the system and chip work so we can have a test system at DL and contribute to the chip characterisation

Reminder: ALICE ITS3 concept

- Currently the ITS2 is installed and taking data, it uses the ALPIDE chip
- Can we improve on this by removing most of the material -> wafer-scale bent MAPS thinned $< 50 \ \mu m$
- Replace the 3 innermost layers with cylindrical silicon sensors in LHC LS3 (2026-2028)
- Concept:
 - Cut rectangular sensors from a stitched wafer
 - Bend to half-layers
 - Stack the 3 half-layers -> half barrel
 - Place the two half barrels around the beam pipe -> ITS3 barrel
- TDR published: <u>https://cds.cern.ch/record/2890181</u>

Sensor R&D timeline

Multi-Layer Reticle 1 (MLR1)

First submission in TPSCo 65 nm:

- Lots of prototypes: 55 chips
- Goal: qualify the technology (achieved)

Engineering Run 1 (ER1)

First wafer-scale stitched sensors:

- Two large stitched prototypes
- Goal: assess yield and stitching (ongoing)

Engineering Run 2&3

Final sensor:

- ER2 final sensor prototype (design ongoing)
- ER3 final sensor production

Digital Pixel Test Structure

- I previously worked on the DPTS from the MLR1 submission
- The DPTS chip:
 - 1.5 mm x 1.5 mm
 - 32 x 32 pixel matrix
 - 15 µm pixel pitch
 - Includes in-pixel pulsing
 - One analogue pixel
 - Different chip biases used to control the operation of the chip
 - Can supply a reverse bias down to -6 V (Vsub = Vpwell)
- Provides insights on the applicability of the custom digital cells used to compose the architecture
- Testing includes:
 - Laboratory characterisation to better understand the operation
 - Testbeams to investigate efficiency, spatial resolution and timing resolution
 - Look at irradiated chips up to NIEL: 1x10¹⁵ 1 MeV n_{eq}cm⁻² and TID: 10 Mrad
- The first test results of the DPTS were published: <u>here</u>

Role at DL for DPTS testing

- I continued my role as DPTS coordinator at DL to produce a 2nd paper of results
- The goal of the paper is to collate all remaining results, with a particular focus on the chip performance in low-power consumption regimes
- 2nd paper includes:
 - Chip performance at low power consumption:
 - In the lab: threshold RMS, noise and fake-hit rate (FHR)
 - Test beam: detection efficiency and timing resolution
 - Chip performance after ionising irradiation:
 - In the lab: threshold, FHR, annealing
 - Test beam: detection efficiency and annealing
 - Study into the FHR
 - Measurements of fluorescence X-rays emitted from a target, up to 28 keV
 - Chip performance with inclined tracks at a test beam
- The first draft is complete and under internal review

- DL contribution
- DL Supervised/contributed

Engineering Run 1 wafer

- Engineering Run 1 (ER1) consists of two stitched prototypes:
 - MOSS: MOnolithic Stitched Sensor (14 x 259 mm²)
 - MOST: Timing (2.5 x 259 mm²)
- The goal is to show the feasibility of the stitching process:
 - Manufacturing yield (-> power segmentation granularity)
 - Power distribution and readout over 27 cm length
 - Study uniformity, noise, spread, leakage
 - Pixel architecture characterisation
- Understand stitching 'rules', redundancy, fault tolerance

300mm (12") wafer
MOSS 26 x 1.4 cm ²
Largest ITS3 sensor $\sim 27 \times 9.5 \text{ cm}^2$
Largest 1155 Sensor ~27 x 5.5 cm

Design reticle

- Bonus chips: **babyMOSS**
- A single RSU with both endcaps

Design reticle

Monolithic Stitched Sensor

babyMOSS test system

matthew.buckland@stfc.ac.uk

babyMOSS test system

Test system:

- The DAQ board controls and reads out the chip.
- The Raiser board is an interface board between the DAQ board and the Carrier board
- The Carrier board hosts the babyMOSS chip, which is glued and wire-bonded to the board
- DAQ board has firmware that needs to be programmed
- There is software that is used to control the test system, perform scans and analyse the data
- When using the software 2 config files are needed:
 - ts_config.json5: used to define the test system
 - scan_config.json5: used to control the scan properties (which units to power, DAC settings, masks etc)

babyMOSS list of scans

- Impedance and power testing (performed at CERN with a special setup):
 - 1st impedance measurement: pre-powering.
 - power ramp without PSUB.
 - power ramp with PSUB.
 - 2nd impedance measurement: post powering.
- Functional testing:
 - **power on scan**: powers and configures the chip and measures the currents at each stage
 - register scan: for each register, write certain patterns and check the read out
 - shift register scan: same as register scan but for the row shift register that controls pulsing and masking
 - DAC scan: scans all the DACs used for the chip biasing
- Readout and pixel matrix testing:
 - digital scan: pulses the digital circuit for each pixel and measures the hits
 - analogue scan: pulses the analogue circuit for each pixel and measures the hits
 - FHR scan: read out 100k triggers and measure the noise hits, gives the fake-hit rate of the chip
 - threshold scan: uses the analogue pulsing to measure the threshold of each pixel

babyMOSS stability scan

- After familiarisation with the test system, software, scan and analysis, I was tasked with adapting a scan used for the MOSS for the babyMOSS
- This was the stability scan
- The goal of the scan is to measure the reference current (IREF) and voltage (VREF) and the chip analogue currents as a function of each DAC parameter (IBIAS, IDB, IRESET, VCASB, VCASN, VSHIFT)
- This would confirm if the test system was stable over the chip parameter space
- Performed the scan and the results were good

Summary

ALICE

- babyMOSS is a single sensor unit of the MOSS chip
- Received training at CERN and will soon contribute to the testing of the chip
- Next steps:
 - Receive a test system and babyMOSS chip at DL
 - Decide with CERN a testing plan for DL
 - Polish stability scan code and commit to repository

Backup

Sensor choice

- The ITS3 design leads to many cutting-edge developments in sensor performance, mechanics and design
- With the success of ALPIDE (180 nm) for the ITS2, this chip is a good starting point for ITS3
- ALPIDE:
 - Fully efficient
 - Very low noise
 - Good power-density (esp. in-matrix)
- But for ITS3:
 - Not large enough (only 200 mm wafers)
 - Power consumption is too high for air cooling

- Using a smaller technology, 65 nm, will open more possibilities:
 - Produced on 300 mm wafers, allows for complete z-coverage in the detector (ITS3 active area 270 mm)
 - Possibility to use stitching to reach wafer scale sensors
 - Lower power consumption when moving to deeper sub-micron
- Challenges:

nce & Technology Facilities Counci

Daresbury Laboratory

- Optimise sensor design for yield
- Charge collection to be optimised due to thinner epi layer
- Radiation hardness needs testing, moderate levels are foreseen (NIEL: 1x10¹³ 1 MeV n_{eq}cm⁻² and TID: 10 MRad)
- New technology will need extensive characterisation and qualification

65 nm pixel test structure

DPTS results: efficiency

• Results from the DPTS validated the technology in terms of detection efficiency, spatial resolution, fake-hit rate and radiation hardness

DPTS results: spatial resolution

• Results are published: https://doi.org/10.1016/j.nima.2023.168589