BIC Simulation Meeting

BIC Dynamic Range Simulation Updates + Layer Combination Studies

Maria Zurek

SiPM Considerations - Dynamic Range

- On the high energy side of the spectrum, we have F-DET-ECAL-BAR.2
 - Shall provide photon measurements up to 10 GeV
- SiPM readout consists of 57324 pixels per channel
 - When a pixel fires, it cannot register another signal for some time
 - Large signals can causes non-linearity due to multiple photons striking the same pixel
- 10 GeV photon will yield ~7700 p.e. at max per channel
 - Corresponds to ~14% of max occupancy
 - Slight non-linearity expected, can be corrected for
- Baby BCal beam tests showed no sign of saturation-induced non-linearity for 10 GeV electrons
 - This demonstrates linearity for BIC up to ~ 6 GeV, after scaling for different photon detection efficiency

Estimate for

review

Max Number of Photoelectrons

~7000 phe Summed hit E corrected for attenuation. NKS fiber Smeared nb of phe for e-going and p-going ends, NKS fiber Hit energy for e-going and p-going ends, NKS fiber 80 e-aoina end e-going end e-going end p-going end 10 GeV photons 104 p-going end p-going end 104 60 10³ 10³ at n ~ -1.7 40 10² 10² fsam tuned to 5 20 10¹ 10¹ GeV e^{-} at $\eta = 0$ 100 Ó 2000 4000 6000 8000 Ó 2 3 10 11 12 13 energy [GeV] n phe energy [GeV] Summed hit E corrected for attenuation, NKS fiber Smeared nb of phe for e-going and p-going ends, NKS fiber Hit energy for e-going and p-going ends, NKS fiber e-going end e-going end e-going end p-going end 104 p-going end 104 p-going end 60 10 GeV photons 10³ 10³ at n ~ -1.7 40 10² 10² fsam tuned to 20 10¹ 10¹ this sample 100 100 1000 2000 3000 4000 5000 6000 7000 0.0 0.5 1.0 1.5 2.0 2.5 3.0 10 0 3.5 n phe energy [GeV] energy [GeV] ~6000 phe

Full simulations

Max Number of Photoelectrons

Full simulations

50 GeV electrons at $\eta \sim 1.4$

- top: fsam tuned to 5 GeV e⁻ at η = 0
- bottom: fsam tuned to this sample

19 GeV electrons at $\eta \sim -1.7$

- top: fsam tuned to 5 GeV e^{-} at $\eta = 0$
- bottom: fsam tuned to this sample

Nonlinearity

MPPC Linearity

Pixel Size and Number of Pixels

Defined by photoelectron statistics and energy range to be measured

Energy measurement ranges in BECal:

- Shall provide photon measurements up to 10 GeV (F-DET-ECAL-BAR.2) and down to 100 MeV (F-DET-ECAL.9)
- Shall provide electron ID up to 50 GeV and down to 1 GeV and below (F-DET-ECAL-BAR.1)
 - Electron energy measurement needed for e/π separation only (straightforward at high energies)
- Reasonable performance for MIPs needed for calibration and for muon ID

Largest energy deposit occurs for particles at large η (steep angle) where the pathlength in a cell is maximal and the attenuation is minimal.

Photoelectron statistics

From our 2023 Hall D tests using GlueX SiPMs and double-clad Kuraray fibers: **1000 phe/GeV** per side for showers at the center of the Baby BCAL prototype

- Corrected for attenuation: 1077 phe/GeV* per side

We can scale these results for the ePIC Barrel ECal*:

- x 1.5 factor improvement in SiPM photon detection efficiency
- x 1.16 factor to account for better optical coupling
- x 0.69 reduction accounting for single-clad Kuraray fibers

This gives ~ 1239 phe/GeV per side (fully corrected for attenuation)

- 10 GeV y at $\eta \sim -1.7$: 5560 phe \rightarrow 9.8 % max SiPM occupancy
- 19 GeV e⁻ at $\eta \sim -1.7$: 9181 phe $\rightarrow 16.1$ % max SiPM occupancy
- 50 GeV e⁻ at $\eta \sim 1.4$ (most extreme case): 17456 phe \rightarrow 30.1% max SiPM occupancy

Well below the region where large nonlinearities in the SiPM response are expected in almost all cases.

Small non-linear effects possible for some ultra-high energy electrons, which is acceptable (e- π separation straightforward).

* See backup slide for the attenuation length measurement and extraction of those factors

Fig. 16. The number of photoelectrons per GeV per end of the BCAL module is shown as a function of energy. A one parameter fit is plotted (dashed line). For more details see the text.

Layer Configuration

AstroPix Layer Placement

Layer Placement (1-3-4-6): General Motivation

6 imaging layers separated by $1.45X_0$ at $\eta = 0$ of Pb/ScFi

All layers important for the e/ π separation for mid energy particles <5 GeV and overall sampling of shower energy for SciFi/Pb close shower energy splitting

Front layers important for γ/π^0 separation and position resolution

- 1st layer in front of the calorimeter: effectively a tracking layer for charged particles to support DIRC PID - very little "calorimetric" performance
- 1 pre-shower slot empty (impact on γ/π^0 separation and position resolution)
- 2 layers around shower max (sample much total of shower for energy reconstruction and shower separation and e/π separation)
- 1 post-shower slot empty (important sampling overall shower energy, e/π)
- 1 layer in tail (deeper in the tail for larger η to catch e/π separation and still sample important part of shower energy)

3 GeV electron shower profile at $\eta = 0$

Optimized for preserving e/π separation for mid energy particles and max shower sampling for effective 3 calorimetric layers only

Mean hit multiplicity per AstroPix Layer vs Energy

Mean Number of Fired Pixels vs. Energy

Note that mean includes the cases when there is no hits at all

% of events with zero hits in the layers

See backup for example distributions of nb of hits per layer

Mean hit multiplicity and % of zero hits in all AstroPix layers Different layer configurations

Note that this is for photons at $\eta=0$, different η will differ

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Energy Resolution Different layer configurations

Plot show Standard Deviation of energy deposit in AstroPix layers

Photons, η =0: for low energy response at this rapidity, 3-4-5-6, 2-3-5-6, 2-3-4-6 look preferable

For high energy, overall energy reconstruction affected by longitudinal shower (and it's shower max) fluctuations.

Extreme example for $\eta=0$, at larger η , more confinement