

Simulating Cerenkov photons on GPU

Gabor Galgoczi (NPPS)

19 Sept 2024

Detector simulations at EIC

- Why are detector (Monte Carlo) simulations useful?
 - Detector performance
 - Accurate modeling of detector response
 - Optimization of detector design
 - Data analysis and interpretation
 - Event reconstruction
 - Calibration and alignment
 - Fundamental research:
 - Testing theoretical models

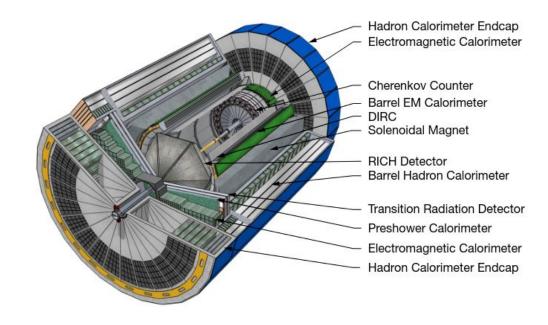
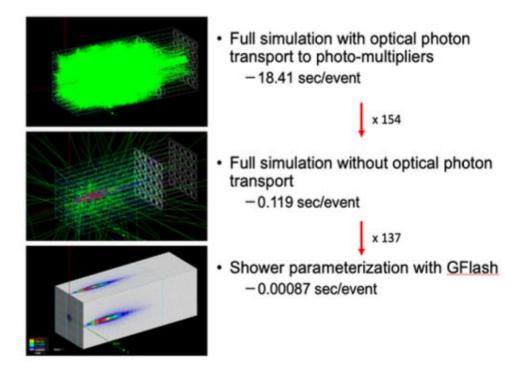



Figure 9.2: A cutaway illustration of a generic EIC concept detector.

https://arxiv.org/pdf/2103.05419

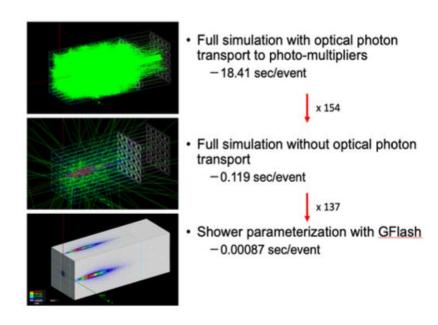
Detector simulations at EIC

- The problem with detector simulations:
 - Can be very slow for complex geometry and interaction
- For Cerenkov detectors and calorimeters ~99% of time is spent on simulating optical photons

5 GeV electron in an Electromagnetic calorimeter, with Geant4 tools using eAST

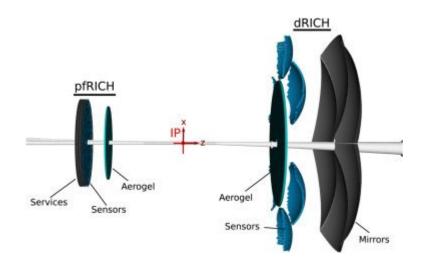
How to make MC simulations faster?

- Let's use GPUs!
- Many projects building generic MC sim. on GPUs for years
 - Very hard
- Low hanging fruit:
 - GPU for optical photon simulation only
 - O What makes it faster?
 - Gaming!


This is a calculation on GPU!

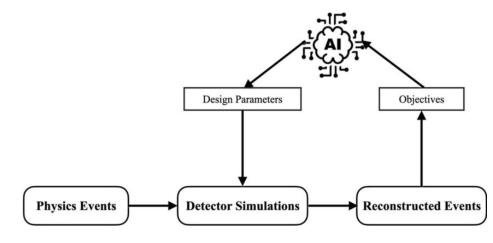
ASUS TUF Gaming NVIDIA GeForce RTX 3080

How to make MC simulations faster?


- Let's use GPUs!
- Many projects building generic MC sim. on GPUs for years
 - Very hard
- Low hanging fruit:
 - GPU for optical photon simulation only
- Main tasks:
 - Convert detector geometry into GPU compatible one
 - Implement all the optical physics on GPU
 - Rayleigh scattering, Fresnel reflection, polarization...
 - Transfer optical photon data to GPU
 - Perform ray-tracing
 - Return results from GPU and integrate with other SW

5 GeV electron in an Electromagnetic calorimeter, with Geant4 tools using eAST

Where to use at EIC?


- We will use proximity-focusing Ring Imaging CHerenkov
 (pfRICH) detector to test our GPU optical photon propagation
- Then the next target is dual-radiator Ring Imaging Cherenkov (dRICH)
- Simulating Cerenkov photons on GPU will yield 10-100x faster detector simulations
 - We can simulate a lot of detector geometries
 - -> better detector optimization

https://doi.org/10.1016/j.nima.2023.168591

Where to use at EIC?

- We will use proximity-focusing Ring Imaging CHerenkov
 (pfRICH) detector to test our GPU optical photon propagation
- Then the next target is dual-radiator Ring Imaging Cherenkov (dRICH)
- Simulating Cerenkov photons on GPU will yield 10-100x faster detector simulations
 - We can simulate a lot of detector geometries
 - -> better detector optimization
 - Provide more data to ML -> better detector optimization with ML
 - Artificial Intelligence for the Electron Ion Collider (AI4EIC)

DOI:<u>10.1007/s41781-024-00113-4</u>