





# Update on dRICH Simulation Activities for TDR

dRICH Simulation Meeting
25 September 2024

D. Samuel, M. Thakur, R. Kumar for Team CUH & CUK



# Aim & Strategy



#### • For TDR:

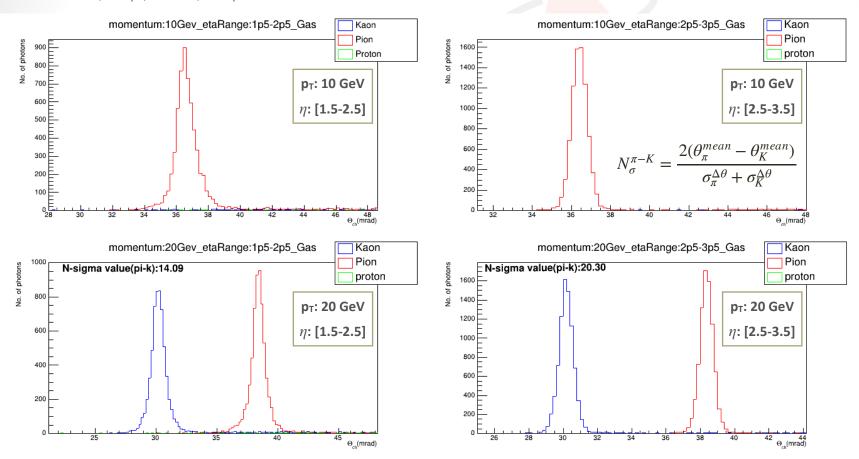
- ullet PID performance of dRICH (in terms of  $N_{\sigma}$  vs p plots) for both radiators)
- ◆ Look Up Tables (LUTs)

#### • Previous presentation (13 September 2024):

- ◆ PID detector performance of dRICH at ePIC with gas as the radiator
- $\bullet$  Particles considered:  $\pi^+, K^+$  and protons
- **◆ Using polar scan** in two different  $\eta$  regions: [1.5 to 2.5] and [2.5 to 3.5]
- ◆ Different p-regions in range 10-60 GeV with step-size of 2.5 GeV
- ◆ Issue 1: data overwriting (?) while simulation using polar scan
- lacktriangle Issue 2: calculation of  $N_\sigma$  as difference in two mean values ( $heta_c$ ) only

#### Today's presentation (Similar study with resolved issues):

- 1. Simulation one-by-one for each value of  $p \& \eta$  and then merging the files according to two  $\eta$  regions: [1.5 to 2.5] and [2.5 to 3.5] for each p-value
- 2. Accurate calculation of  $N_{\sigma}$  ( $\pi-K$ ) and plotting it as a function of momentum





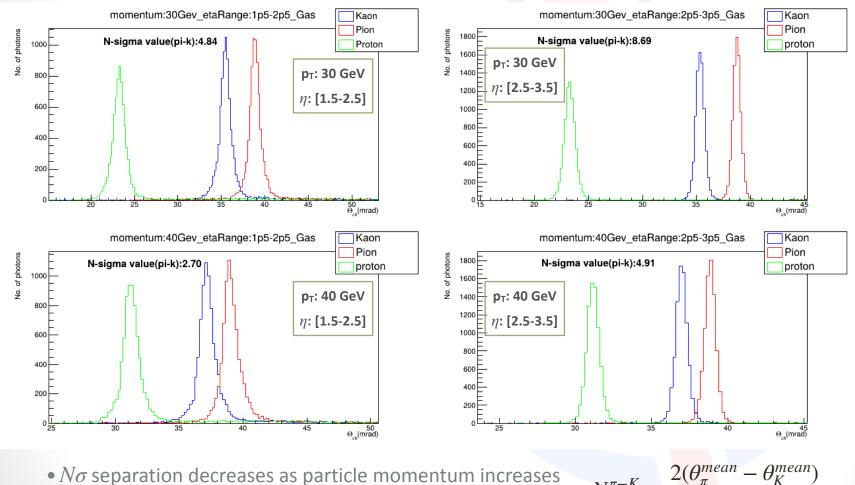

## Particle Identification at dRICH

**Radiator: Gas** 

Credits: Rohit, Tanya, Girdish, Taniya



- The kaons with higher (>10 GeV) threshold are not observed at 10 GeV
- The protons with even higher (>20 GeV) threshold are not observed at 10 GeV & 20 GeV







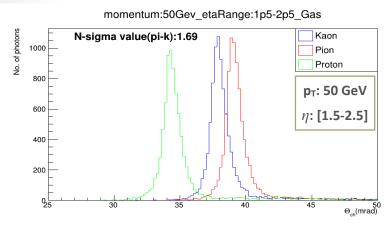

Credits: Rohit, Tanya, Girdish, Taniya

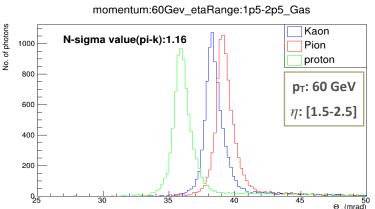
Radiator: Gas

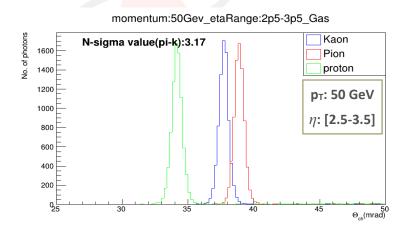


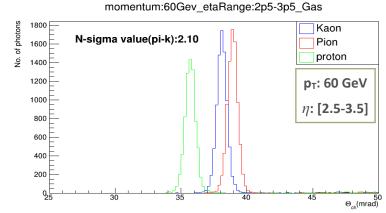
ullet Separation is better in high- $\eta$  region

 $N_{\sigma}^{\pi-K} = \frac{2(\theta_{\pi}^{mean} - \theta_{K}^{mean})}{\sigma_{\pi}^{\Delta\theta} + \sigma_{K}^{\Delta\theta}}$ 





# Particle Identification at dRICH





**Radiator: Gas** 

Credits: Rohit, Tanya, Girdish, Taniya

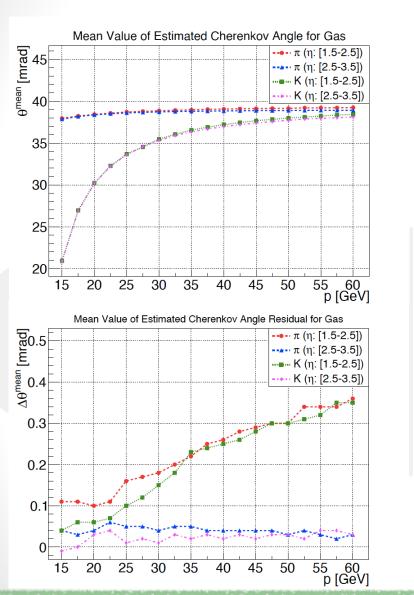


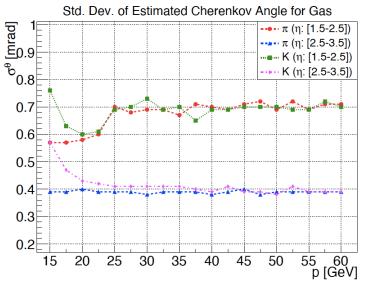


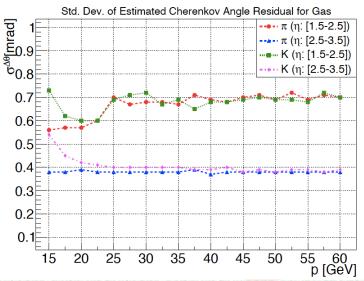




- ullet  $N\sigma$  separation decreases as particle momentum increases
- Separation is better in high- $\eta$  region


$$N_{\sigma}^{\pi-K} = \frac{2(\theta_{\pi}^{mean} - \theta_{K}^{mean})}{\sigma_{\pi}^{\Delta\theta} + \sigma_{K}^{\Delta\theta}}$$



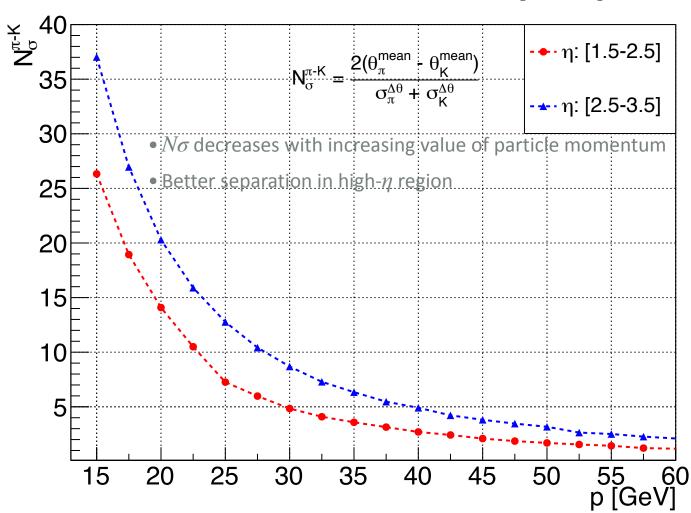

### Particle Identification at dRICH

#### **Radiator: Gas**








6





# $N\sigma$ vs $p(\pi - K \text{ separation})$

#### PID Performance for dRICH-ePIC [in Gas]









#### **GPU Specifications**

| СРИ       | Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz |  |  |  |  |  |  |
|-----------|------------------------------------------|--|--|--|--|--|--|
| CPU Max   | 3.7 GHz                                  |  |  |  |  |  |  |
| CPUs      | 64                                       |  |  |  |  |  |  |
| Phys. Mem | 188 GB                                   |  |  |  |  |  |  |
| Storage   | 1.8 TB x 2                               |  |  |  |  |  |  |
| GPU       | Tesla V100 with 32 GB memory             |  |  |  |  |  |  |

#### **Availability**

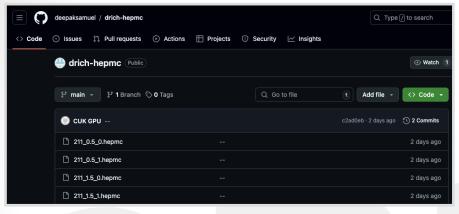
12h per day for EIC activities

Parallel processing of DRICH simulations



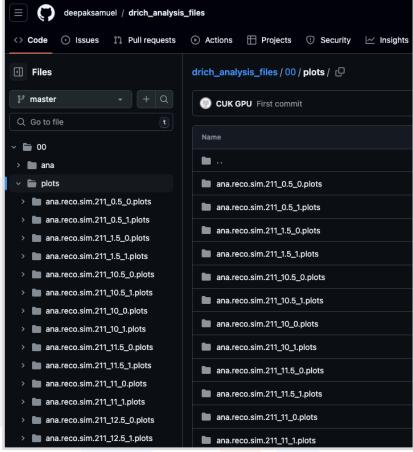
|      | 0[ 100.0%] | 4[ 100.0%] | 8[ 100.0%]  | 12[ 100.0%] | 16[ 100.0%] | 20[ 100.0%] | 24[ 100.0%] | 28[ 100.0%] | 32[ 100.0%]   | 36[ 100.0%] | 40[ 100.0%] | 44[ 100.0%] | 48[ 100.0%] | 52[ 100.0%] | 56[ 100.0%] | 60[ 100.0%] |
|------|------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|      | 1[ 100.0%] | 5[ 100.0%] | 9[ 100.0%]  | 13[ 100.0%] | 17[ 100.0%] | 21[ 100.0%] | 25[ 100.0%] | 29[ 100.0%] | 33[ 100.0%]   | 37[ 100.0%] | 41[ 100.0%] | 45[ 100.0%] | 49[ 100.0%] | 53[ 100.0%] | 57[ 100.0%] | 61[ 100.0%] |
|      | 2[ 100.0%] | 6[ 100.0%] | 10[ 100.0%] | 14[ 100.0%] | 18[ 100.0%] | 22[ 100.0%] | 26[ 100.0%] | 30[ 100.0%] | 34[ 100.0%]   | 38[ 100.0%] | 42[ 100.0%] | 46[ 100.0%] | 50[ 100.0%] | 54[ 100.0%] | 58[ 100.0%] | 62[ 100.0%] |
|      | 3[ 100.0%] | 7[ 100.0%] | 11[ 100.0%] | 15[ 100.0%] | 19[ 100.0%] | 23[ 100.0%] | 27[ 100.0%] | 31[ 100.0%] | 35[ 100.0%]   | 39[ 100.0%] | 43[ 100.0%] | 47[ 100.0%] | 51[ 100.0%] | 55[ 100.0%] | 59[ 100.0%] | 63[ 100.0%] |
|      | Mem[       |            |             |             |             |             |             |             |               |             |             |             |             |             |             |             |
| Swp[ |            |            |             |             |             |             |             | 0K/8.00G]   | Load average: | 64.83 60.71 | 38.05       |             |             |             |             |             |
|      |            |            |             |             |             |             |             |             | Uptime: 05:05 | :25         |             |             |             |             |             |             |
|      |            |            |             |             |             |             |             |             |               |             |             |             |             |             |             |             |

| Main I/O    |     |                      |               |        |             |           |                                                                                                                                     |
|-------------|-----|----------------------|---------------|--------|-------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------|
| PID USER    | PRI | NI VIRT RES          | SHR S         | CPU%√I | IEM% TIME+  | Command   |                                                                                                                                     |
| 7421 samuel | 20  | 0 2633M 2306M        | 290M R        | 97.1   | 1.2 13:16.2 | 4 python  | /opt/software/linux-debian12-x86_64_v2/gcc-12.2.0/npsim-1.4.1-gpjrkmqgvaf4cp425jnytqzjmsouvcqy/bin/npsim.pyrunType runcompactFile / |
| 7392 samuel | 20  | 0 2700M 2382M        | 287M R        | 95.5   | 1.2 13:15.0 | 9 python  | /opt/software/linux-debian12-x86_64_v2/gcc-12.2.0/npsim-1.4.1-gpjrkmqgvaf4cp425jnytqzjmsouvcqy/bin/npsim.pyrunType runcompactFile / |
| 7419 samuel | 20  | 0 2757M 2442M        | 291M R        | 95.0   | 1.3 13:14.4 | 1 python  | /opt/software/linux-debian12-x86_64_v2/gcc-12.2.0/npsim-1.4.1-gpjrkmqgvaf4cp425jnytqzjmsouvcqy/bin/npsim.pyrunType runcompactFile / |
| 7401 samuel | 20  | 0 2269M 1944M        | 288M R        | 92.9   | 1.0 13:14.3 | 2 python  | /opt/software/linux-debian12-x86_64_v2/gcc-12.2.0/npsim-1.4.1-gpjrkmqgvaf4cp425jnytqzjmsouvcqy/bin/npsim.pyrunType runcompactFile / |
| 8544 samuel | 20  | 0 8168 6144          | 3072 R        | 20.7   | 0.0 2:28.1  | 2 /snap/h | utop/4407/usr/local/bin/htop                                                                                                        |
| 8418 samuel | 20  | 0 2754M 2441M        | 290M S        | 1.1    | 1.3 0:02.4  | 7 python  | /opt/software/linux-debian12-x86_64_v2/gcc-12.2.0/npsim-1.4.1-gpjrkmqgvaf4cp425jnytqzjmsouvcqy/bin/npsim.pyrunType runcompactFile / |
| 8421 samuel | 20  | <b>0</b> 2653M 2330M | 287M S        | 1.1    | 1.2 0:02.4  | 4 python  | /opt/software/linux-debian12-x86_64_v2/gcc-12.2.0/npsim-1.4.1-gpjrkmqgvaf4cp425jnytqzjmsouvcqy/bin/npsim.pyrunType runcompactFile / |
| 8397 samuel | 20  | 0 2732M 2420M        | 291M S        | 0.5    | 1.3 0:02.3  | 3 python  | /opt/software/linux-debian12-x86_64_v2/gcc-12.2.0/npsim-1.4.1-gpjrkmqgvaf4cp425jnytqzjmsouvcqy/bin/npsim.pyrunType runcompactFile / |
| 8399 samuel | 20  | <b>0</b> 2740M 2424M | 288M S        | 0.5    | 1.3 0:02.3  | 6 python  | /opt/software/linux-debian12-x86_64_v2/gcc-12.2.0/npsim-1.4.1-gpjrkmqgvaf4cp425jnytqzjmsouvcqy/bin/npsim.pyrunType runcompactFile / |
| 8401 samuel | 20  | 0 2683M 2336M        | 288M S        | 0.5    | 1.2 0:02.4  | 1 python  | /opt/software/linux-debian12-x86_64_v2/gcc-12.2.0/npsim-1.4.1-gpjrkmqgvaf4cp425jnytqzjmsouvcqy/bin/npsim.pyrunType runcompactFile / |
| 8403 samuel | 20  | 0 2578M 2252M        | 287M S        | 0.5    | 1.2 0:02.4  | 3 python  | /opt/software/linux-debian12-x86_64_v2/gcc-12.2.0/npsim-1.4.1-gpjrkmqgvaf4cp425jnytqzjmsouvcqy/bin/npsim.pyrunType runcompactFile / |
| 8407 samuel | 20  | 0 2616M 2293M        | 288M S        | 0.5    | 1.2 0:02.4  | 3 python  | /opt/software/linux-debian12-x86_64_v2/gcc-12.2.0/npsim-1.4.1-gpjrkmqgvaf4cp425jnytqzjmsouvcqy/bin/npsim.pyrunType runcompactFile / |
| 8408 samuel | 20  | <b>0</b> 2707M 2395M | 291M S        | 0.5    | 1.2 0:02.4  | 0 python  | /opt/software/linux-debian12-x86_64_v2/gcc-12.2.0/npsim-1.4.1-gpjrkmqgvaf4cp425jnytqzjmsouvcqy/bin/npsim.pyrunType runcompactFile / |
| 8410 samuel | 20  | 0 2683M 2369M        | 288M <b>S</b> |        |             |           | /opt/software/linux-debian12-x86_64_v2/gcc-12.2.0/npsim-1.4.1-gpjrkmqgvaf4cp425jnytqzjmsouvcqy/bin/npsim.pyrunType runcompactFile / |
| 8411 samuel | 20  | 0 2629M 2281M        | 288M S        | 0.5    | 1.2 0:02.4  | 1 python  | /opt/software/linux-debian12-x86_64_v2/gcc-12.2.0/npsim-1.4.1-gpjrkmqgvaf4cp425jnytqzjmsouvcqy/bin/npsim.pyrunType runcompactFile / |
|             | 20  | <b>0</b> 2629M 2281M | 288M <b>S</b> | 0.5    | 1.2 0:02.4  | 1 python  |                                                                                                                                     |


2






# Use of GPU for Simulation

https://github.com/deepaksamuel/drich-hepmc



- Switching to GPU for event simulation
- Production of HEPMC files
- Thanks to basis script from Chandra & significant efforts from Deepak
- Event generation is being done (for pions, kaons and protons) in two η-regions: [1.5 to 2.5] and [2.5 to 3.5] for different momentum values in the range 10-60 GeV with a step-size of 0.5 GeV [10k events for each p-value]

https://github.com/deepaksamuel/drich analysis files



[Test Run for 50 events only]

The HEPMC files are also accessible to other members of the group for their use



# Summary



- We aim to perform PID performance studies for dRICH at ePIC (TDR contribution)
  - $N_{\sigma}$  vs p plots for both radiators for corresponding to  $\pi K$  and p K separation
  - Look Up Tables (LUTs)
- $\bullet$  Fully working machinery for producing  $N_{\sigma} \operatorname{vs} p$  plots
- Next (final) round of event generation & reconstruction is being done using GPU@CUK and with new aerogel parameters
- $\bullet$  We are looking forward to show the  $N_{\sigma}$  vs p plots for both radiators during the next meeting





# Thank

We look forward to your comments and suggestions...















Faculty (CUH)

Ramandeep Kumar Faculty (CUH)

Tanya Tanvi Student (CUH)

Girdish Laishram Student (CUH)

**Rohit Jangid** Student (CUH)



Faculty (CUK)

Taniya Student (CUH)



Adithyan Rajan Student (CUK)



**Indranil Samanta** Student



Hrishikesh Student



**Nebin George** Student



Niranjan Student